Solve for A
A\neq 0
\left(B\neq 0\text{ and }D=0\text{ and }E=0\text{ and }C\neq 0\right)\text{ or }\left(B=\frac{CD}{E}\text{ and }C\neq 0\text{ and }D\neq 0\text{ and }E\neq 0\right)
Solve for B
\left\{\begin{matrix}B=\frac{CD}{E}\text{, }&C\neq 0\text{ and }D\neq 0\text{ and }E\neq 0\text{ and }A\neq 0\\B\neq 0\text{, }&D=0\text{ and }E=0\text{ and }C\neq 0\text{ and }A\neq 0\end{matrix}\right.
Share
Copied to clipboard
CAD=BAE
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ABC, the least common multiple of AB,AC.
CAD-BAE=0
Subtract BAE from both sides.
-ABE+ACD=0
Reorder the terms.
\left(-BE+CD\right)A=0
Combine all terms containing A.
\left(CD-BE\right)A=0
The equation is in standard form.
A=0
Divide 0 by DC-EB.
A\in \emptyset
Variable A cannot be equal to 0.
CAD=BAE
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ABC, the least common multiple of AB,AC.
BAE=CAD
Swap sides so that all variable terms are on the left hand side.
AEB=ACD
The equation is in standard form.
\frac{AEB}{AE}=\frac{ACD}{AE}
Divide both sides by AE.
B=\frac{ACD}{AE}
Dividing by AE undoes the multiplication by AE.
B=\frac{CD}{E}
Divide CAD by AE.
B=\frac{CD}{E}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}