Solve for A
A=\frac{\sqrt{3}\left(BD+20\right)}{3B}
B\neq 0\text{ and }\left(D=0\text{ or }B\neq -\frac{20}{D}\right)
Solve for B
B=\frac{20}{\sqrt{3}A-D}
A\neq 0\text{ and }A\neq \frac{\sqrt{3}D}{3}
Share
Copied to clipboard
AB=\frac{1}{3}\left(BD+20\right)\times 3^{\frac{1}{2}}
Multiply both sides of the equation by BD+20.
AB=\left(\frac{1}{3}BD+\frac{20}{3}\right)\times 3^{\frac{1}{2}}
Use the distributive property to multiply \frac{1}{3} by BD+20.
AB=\frac{1}{3}BD\times 3^{\frac{1}{2}}+\frac{20}{3}\times 3^{\frac{1}{2}}
Use the distributive property to multiply \frac{1}{3}BD+\frac{20}{3} by 3^{\frac{1}{2}}.
AB=\frac{1}{3}\sqrt{3}BD+\frac{20}{3}\sqrt{3}
Reorder the terms.
BA=\frac{\sqrt{3}BD+20\sqrt{3}}{3}
The equation is in standard form.
\frac{BA}{B}=\frac{\sqrt{3}\left(BD+20\right)}{3B}
Divide both sides by B.
A=\frac{\sqrt{3}\left(BD+20\right)}{3B}
Dividing by B undoes the multiplication by B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}