Solve for A
A\neq 0
O = \frac{\sqrt{34}}{34} = 0.17149858514250885
Solve for O
O = \frac{\sqrt{34}}{34} = 0.17149858514250885
A\neq 0
Share
Copied to clipboard
A=AO\sqrt{5^{2}+\left(-3\right)^{2}}
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by AO.
A=AO\sqrt{25+\left(-3\right)^{2}}
Calculate 5 to the power of 2 and get 25.
A=AO\sqrt{25+9}
Calculate -3 to the power of 2 and get 9.
A=AO\sqrt{34}
Add 25 and 9 to get 34.
A-AO\sqrt{34}=0
Subtract AO\sqrt{34} from both sides.
-\sqrt{34}AO+A=0
Reorder the terms.
\left(-\sqrt{34}O+1\right)A=0
Combine all terms containing A.
A=0
Divide 0 by -\sqrt{34}O+1.
A\in \emptyset
Variable A cannot be equal to 0.
A=AO\sqrt{5^{2}+\left(-3\right)^{2}}
Variable O cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by AO.
A=AO\sqrt{25+\left(-3\right)^{2}}
Calculate 5 to the power of 2 and get 25.
A=AO\sqrt{25+9}
Calculate -3 to the power of 2 and get 9.
A=AO\sqrt{34}
Add 25 and 9 to get 34.
AO\sqrt{34}=A
Swap sides so that all variable terms are on the left hand side.
\sqrt{34}AO=A
The equation is in standard form.
\frac{\sqrt{34}AO}{\sqrt{34}A}=\frac{A}{\sqrt{34}A}
Divide both sides by A\sqrt{34}.
O=\frac{A}{\sqrt{34}A}
Dividing by A\sqrt{34} undoes the multiplication by A\sqrt{34}.
O=\frac{\sqrt{34}}{34}
Divide A by A\sqrt{34}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}