Skip to main content
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

aA\times \frac{4+a}{2}=4\left(2+\sqrt{a^{2}+4}\right)
Multiply both sides of the equation by 4a, the least common multiple of 4,2,a.
\frac{a\left(4+a\right)}{2}A=4\left(2+\sqrt{a^{2}+4}\right)
Express a\times \frac{4+a}{2} as a single fraction.
\frac{a\left(4+a\right)}{2}A=8+4\sqrt{a^{2}+4}
Use the distributive property to multiply 4 by 2+\sqrt{a^{2}+4}.
\frac{4a+a^{2}}{2}A=8+4\sqrt{a^{2}+4}
Use the distributive property to multiply a by 4+a.
\left(2a+\frac{1}{2}a^{2}\right)A=8+4\sqrt{a^{2}+4}
Divide each term of 4a+a^{2} by 2 to get 2a+\frac{1}{2}a^{2}.
\left(\frac{a^{2}}{2}+2a\right)A=4\sqrt{a^{2}+4}+8
The equation is in standard form.
\frac{\left(\frac{a^{2}}{2}+2a\right)A}{\frac{a^{2}}{2}+2a}=\frac{4\sqrt{a^{2}+4}+8}{\frac{a^{2}}{2}+2a}
Divide both sides by 2a+\frac{1}{2}a^{2}.
A=\frac{4\sqrt{a^{2}+4}+8}{\frac{a^{2}}{2}+2a}
Dividing by 2a+\frac{1}{2}a^{2} undoes the multiplication by 2a+\frac{1}{2}a^{2}.
A=\frac{8\left(\sqrt{a^{2}+4}+2\right)}{a\left(a+4\right)}
Divide 8+4\sqrt{a^{2}+4} by 2a+\frac{1}{2}a^{2}.