Solve for A
A=\frac{8\left(\sqrt{a^{2}+4}+2\right)}{a\left(a+4\right)}
a\neq -4\text{ and }a\neq 0
Share
Copied to clipboard
aA\times \frac{4+a}{2}=4\left(2+\sqrt{a^{2}+4}\right)
Multiply both sides of the equation by 4a, the least common multiple of 4,2,a.
\frac{a\left(4+a\right)}{2}A=4\left(2+\sqrt{a^{2}+4}\right)
Express a\times \frac{4+a}{2} as a single fraction.
\frac{a\left(4+a\right)}{2}A=8+4\sqrt{a^{2}+4}
Use the distributive property to multiply 4 by 2+\sqrt{a^{2}+4}.
\frac{4a+a^{2}}{2}A=8+4\sqrt{a^{2}+4}
Use the distributive property to multiply a by 4+a.
\left(2a+\frac{1}{2}a^{2}\right)A=8+4\sqrt{a^{2}+4}
Divide each term of 4a+a^{2} by 2 to get 2a+\frac{1}{2}a^{2}.
\left(\frac{a^{2}}{2}+2a\right)A=4\sqrt{a^{2}+4}+8
The equation is in standard form.
\frac{\left(\frac{a^{2}}{2}+2a\right)A}{\frac{a^{2}}{2}+2a}=\frac{4\sqrt{a^{2}+4}+8}{\frac{a^{2}}{2}+2a}
Divide both sides by 2a+\frac{1}{2}a^{2}.
A=\frac{4\sqrt{a^{2}+4}+8}{\frac{a^{2}}{2}+2a}
Dividing by 2a+\frac{1}{2}a^{2} undoes the multiplication by 2a+\frac{1}{2}a^{2}.
A=\frac{8\left(\sqrt{a^{2}+4}+2\right)}{a\left(a+4\right)}
Divide 8+4\sqrt{a^{2}+4} by 2a+\frac{1}{2}a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}