Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{A+B+1}{B\left(A+B-1\right)}-\frac{A+1}{B\left(A-1\right)}
Factor B^{2}+AB-B. Factor AB-B.
\frac{\left(A+B+1\right)\left(A-1\right)}{B\left(A-1\right)\left(A+B-1\right)}-\frac{\left(A+1\right)\left(A+B-1\right)}{B\left(A-1\right)\left(A+B-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of B\left(A+B-1\right) and B\left(A-1\right) is B\left(A-1\right)\left(A+B-1\right). Multiply \frac{A+B+1}{B\left(A+B-1\right)} times \frac{A-1}{A-1}. Multiply \frac{A+1}{B\left(A-1\right)} times \frac{A+B-1}{A+B-1}.
\frac{\left(A+B+1\right)\left(A-1\right)-\left(A+1\right)\left(A+B-1\right)}{B\left(A-1\right)\left(A+B-1\right)}
Since \frac{\left(A+B+1\right)\left(A-1\right)}{B\left(A-1\right)\left(A+B-1\right)} and \frac{\left(A+1\right)\left(A+B-1\right)}{B\left(A-1\right)\left(A+B-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{A^{2}-A+AB-B+A-1-A^{2}-AB+A-A-B+1}{B\left(A-1\right)\left(A+B-1\right)}
Do the multiplications in \left(A+B+1\right)\left(A-1\right)-\left(A+1\right)\left(A+B-1\right).
\frac{-2B}{B\left(A-1\right)\left(A+B-1\right)}
Combine like terms in A^{2}-A+AB-B+A-1-A^{2}-AB+A-A-B+1.
\frac{-2}{\left(A-1\right)\left(A+B-1\right)}
Cancel out B in both numerator and denominator.
\frac{-2}{A^{2}+AB-2A-B+1}
Expand \left(A-1\right)\left(A+B-1\right).
\frac{A+B+1}{B\left(A+B-1\right)}-\frac{A+1}{B\left(A-1\right)}
Factor B^{2}+AB-B. Factor AB-B.
\frac{\left(A+B+1\right)\left(A-1\right)}{B\left(A-1\right)\left(A+B-1\right)}-\frac{\left(A+1\right)\left(A+B-1\right)}{B\left(A-1\right)\left(A+B-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of B\left(A+B-1\right) and B\left(A-1\right) is B\left(A-1\right)\left(A+B-1\right). Multiply \frac{A+B+1}{B\left(A+B-1\right)} times \frac{A-1}{A-1}. Multiply \frac{A+1}{B\left(A-1\right)} times \frac{A+B-1}{A+B-1}.
\frac{\left(A+B+1\right)\left(A-1\right)-\left(A+1\right)\left(A+B-1\right)}{B\left(A-1\right)\left(A+B-1\right)}
Since \frac{\left(A+B+1\right)\left(A-1\right)}{B\left(A-1\right)\left(A+B-1\right)} and \frac{\left(A+1\right)\left(A+B-1\right)}{B\left(A-1\right)\left(A+B-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{A^{2}-A+AB-B+A-1-A^{2}-AB+A-A-B+1}{B\left(A-1\right)\left(A+B-1\right)}
Do the multiplications in \left(A+B+1\right)\left(A-1\right)-\left(A+1\right)\left(A+B-1\right).
\frac{-2B}{B\left(A-1\right)\left(A+B-1\right)}
Combine like terms in A^{2}-A+AB-B+A-1-A^{2}-AB+A-A-B+1.
\frac{-2}{\left(A-1\right)\left(A+B-1\right)}
Cancel out B in both numerator and denominator.
\frac{-2}{A^{2}+AB-2A-B+1}
Expand \left(A-1\right)\left(A+B-1\right).