Solve for A
A=\frac{-11a-7}{3}
a\neq 0
Solve for a
a=\frac{-3A-7}{11}
A\neq -\frac{7}{3}
Share
Copied to clipboard
3\left(A+5\right)+12a\times \frac{11}{12}=4\times 2
Multiply both sides of the equation by 12a, the least common multiple of 4a,12,3a.
3A+15+12a\times \frac{11}{12}=4\times 2
Use the distributive property to multiply 3 by A+5.
3A+15+11a=4\times 2
Multiply 12 and \frac{11}{12} to get 11.
3A+15+11a=8
Multiply 4 and 2 to get 8.
3A+11a=8-15
Subtract 15 from both sides.
3A+11a=-7
Subtract 15 from 8 to get -7.
3A=-7-11a
Subtract 11a from both sides.
3A=-11a-7
The equation is in standard form.
\frac{3A}{3}=\frac{-11a-7}{3}
Divide both sides by 3.
A=\frac{-11a-7}{3}
Dividing by 3 undoes the multiplication by 3.
3\left(A+5\right)+12a\times \frac{11}{12}=4\times 2
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12a, the least common multiple of 4a,12,3a.
3A+15+12a\times \frac{11}{12}=4\times 2
Use the distributive property to multiply 3 by A+5.
3A+15+11a=4\times 2
Multiply 12 and \frac{11}{12} to get 11.
3A+15+11a=8
Multiply 4 and 2 to get 8.
15+11a=8-3A
Subtract 3A from both sides.
11a=8-3A-15
Subtract 15 from both sides.
11a=-7-3A
Subtract 15 from 8 to get -7.
11a=-3A-7
The equation is in standard form.
\frac{11a}{11}=\frac{-3A-7}{11}
Divide both sides by 11.
a=\frac{-3A-7}{11}
Dividing by 11 undoes the multiplication by 11.
a=\frac{-3A-7}{11}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}