Evaluate
\frac{99941}{72}\approx 1388.069444444
Factor
\frac{139 \cdot 719}{2 ^ {3} \cdot 3 ^ {2}} = 1388\frac{5}{72} = 1388.0694444444443
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)99941}\\\end{array}
Use the 1^{st} digit 9 from dividend 99941
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)99941}\\\end{array}
Since 9 is less than 72, use the next digit 9 from dividend 99941 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)99941}\\\end{array}
Use the 2^{nd} digit 9 from dividend 99941
\begin{array}{l}\phantom{72)}01\phantom{4}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}27\\\end{array}
Find closest multiple of 72 to 99. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 99 to get reminder 27. Add 1 to quotient.
\begin{array}{l}\phantom{72)}01\phantom{5}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}279\\\end{array}
Use the 3^{rd} digit 9 from dividend 99941
\begin{array}{l}\phantom{72)}013\phantom{6}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}279\\\phantom{72)}\underline{\phantom{}216\phantom{99}}\\\phantom{72)9}63\\\end{array}
Find closest multiple of 72 to 279. We see that 3 \times 72 = 216 is the nearest. Now subtract 216 from 279 to get reminder 63. Add 3 to quotient.
\begin{array}{l}\phantom{72)}013\phantom{7}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}279\\\phantom{72)}\underline{\phantom{}216\phantom{99}}\\\phantom{72)9}634\\\end{array}
Use the 4^{th} digit 4 from dividend 99941
\begin{array}{l}\phantom{72)}0138\phantom{8}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}279\\\phantom{72)}\underline{\phantom{}216\phantom{99}}\\\phantom{72)9}634\\\phantom{72)}\underline{\phantom{9}576\phantom{9}}\\\phantom{72)99}58\\\end{array}
Find closest multiple of 72 to 634. We see that 8 \times 72 = 576 is the nearest. Now subtract 576 from 634 to get reminder 58. Add 8 to quotient.
\begin{array}{l}\phantom{72)}0138\phantom{9}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}279\\\phantom{72)}\underline{\phantom{}216\phantom{99}}\\\phantom{72)9}634\\\phantom{72)}\underline{\phantom{9}576\phantom{9}}\\\phantom{72)99}581\\\end{array}
Use the 5^{th} digit 1 from dividend 99941
\begin{array}{l}\phantom{72)}01388\phantom{10}\\72\overline{)99941}\\\phantom{72)}\underline{\phantom{}72\phantom{999}}\\\phantom{72)}279\\\phantom{72)}\underline{\phantom{}216\phantom{99}}\\\phantom{72)9}634\\\phantom{72)}\underline{\phantom{9}576\phantom{9}}\\\phantom{72)99}581\\\phantom{72)}\underline{\phantom{99}576\phantom{}}\\\phantom{72)9999}5\\\end{array}
Find closest multiple of 72 to 581. We see that 8 \times 72 = 576 is the nearest. Now subtract 576 from 581 to get reminder 5. Add 8 to quotient.
\text{Quotient: }1388 \text{Reminder: }5
Since 5 is less than 72, stop the division. The reminder is 5. The topmost line 01388 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1388.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}