Evaluate
\frac{99}{16}=6.1875
Factor
\frac{3 ^ {2} \cdot 11}{2 ^ {4}} = 6\frac{3}{16} = 6.1875
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)99}\\\end{array}
Use the 1^{st} digit 9 from dividend 99
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)99}\\\end{array}
Since 9 is less than 16, use the next digit 9 from dividend 99 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)99}\\\end{array}
Use the 2^{nd} digit 9 from dividend 99
\begin{array}{l}\phantom{16)}06\phantom{4}\\16\overline{)99}\\\phantom{16)}\underline{\phantom{}96\phantom{}}\\\phantom{16)9}3\\\end{array}
Find closest multiple of 16 to 99. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 99 to get reminder 3. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }3
Since 3 is less than 16, stop the division. The reminder is 3. The topmost line 06 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}