Evaluate
\frac{989}{16}=61.8125
Factor
\frac{23 \cdot 43}{2 ^ {4}} = 61\frac{13}{16} = 61.8125
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)989}\\\end{array}
Use the 1^{st} digit 9 from dividend 989
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)989}\\\end{array}
Since 9 is less than 16, use the next digit 8 from dividend 989 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)989}\\\end{array}
Use the 2^{nd} digit 8 from dividend 989
\begin{array}{l}\phantom{16)}06\phantom{4}\\16\overline{)989}\\\phantom{16)}\underline{\phantom{}96\phantom{9}}\\\phantom{16)9}2\\\end{array}
Find closest multiple of 16 to 98. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 98 to get reminder 2. Add 6 to quotient.
\begin{array}{l}\phantom{16)}06\phantom{5}\\16\overline{)989}\\\phantom{16)}\underline{\phantom{}96\phantom{9}}\\\phantom{16)9}29\\\end{array}
Use the 3^{rd} digit 9 from dividend 989
\begin{array}{l}\phantom{16)}061\phantom{6}\\16\overline{)989}\\\phantom{16)}\underline{\phantom{}96\phantom{9}}\\\phantom{16)9}29\\\phantom{16)}\underline{\phantom{9}16\phantom{}}\\\phantom{16)9}13\\\end{array}
Find closest multiple of 16 to 29. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 29 to get reminder 13. Add 1 to quotient.
\text{Quotient: }61 \text{Reminder: }13
Since 13 is less than 16, stop the division. The reminder is 13. The topmost line 061 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}