Evaluate
\frac{983}{183}\approx 5.371584699
Factor
\frac{983}{3 \cdot 61} = 5\frac{68}{183} = 5.371584699453552
Share
Copied to clipboard
\begin{array}{l}\phantom{183)}\phantom{1}\\183\overline{)983}\\\end{array}
Use the 1^{st} digit 9 from dividend 983
\begin{array}{l}\phantom{183)}0\phantom{2}\\183\overline{)983}\\\end{array}
Since 9 is less than 183, use the next digit 8 from dividend 983 and add 0 to the quotient
\begin{array}{l}\phantom{183)}0\phantom{3}\\183\overline{)983}\\\end{array}
Use the 2^{nd} digit 8 from dividend 983
\begin{array}{l}\phantom{183)}00\phantom{4}\\183\overline{)983}\\\end{array}
Since 98 is less than 183, use the next digit 3 from dividend 983 and add 0 to the quotient
\begin{array}{l}\phantom{183)}00\phantom{5}\\183\overline{)983}\\\end{array}
Use the 3^{rd} digit 3 from dividend 983
\begin{array}{l}\phantom{183)}005\phantom{6}\\183\overline{)983}\\\phantom{183)}\underline{\phantom{}915\phantom{}}\\\phantom{183)9}68\\\end{array}
Find closest multiple of 183 to 983. We see that 5 \times 183 = 915 is the nearest. Now subtract 915 from 983 to get reminder 68. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }68
Since 68 is less than 183, stop the division. The reminder is 68. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}