Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

98\left(3n-1\right)\left(3n+1\right)=101\left(9n^{2}-9+2\right)
Variable n cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 101\left(3n-1\right)\left(3n+1\right), the least common multiple of 101,9n^{2}-1.
\left(294n-98\right)\left(3n+1\right)=101\left(9n^{2}-9+2\right)
Use the distributive property to multiply 98 by 3n-1.
882n^{2}-98=101\left(9n^{2}-9+2\right)
Use the distributive property to multiply 294n-98 by 3n+1 and combine like terms.
882n^{2}-98=101\left(9n^{2}-7\right)
Add -9 and 2 to get -7.
882n^{2}-98=909n^{2}-707
Use the distributive property to multiply 101 by 9n^{2}-7.
882n^{2}-98-909n^{2}=-707
Subtract 909n^{2} from both sides.
-27n^{2}-98=-707
Combine 882n^{2} and -909n^{2} to get -27n^{2}.
-27n^{2}=-707+98
Add 98 to both sides.
-27n^{2}=-609
Add -707 and 98 to get -609.
n^{2}=\frac{-609}{-27}
Divide both sides by -27.
n^{2}=\frac{203}{9}
Reduce the fraction \frac{-609}{-27} to lowest terms by extracting and canceling out -3.
n=\frac{\sqrt{203}}{3} n=-\frac{\sqrt{203}}{3}
Take the square root of both sides of the equation.
98\left(3n-1\right)\left(3n+1\right)=101\left(9n^{2}-9+2\right)
Variable n cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 101\left(3n-1\right)\left(3n+1\right), the least common multiple of 101,9n^{2}-1.
\left(294n-98\right)\left(3n+1\right)=101\left(9n^{2}-9+2\right)
Use the distributive property to multiply 98 by 3n-1.
882n^{2}-98=101\left(9n^{2}-9+2\right)
Use the distributive property to multiply 294n-98 by 3n+1 and combine like terms.
882n^{2}-98=101\left(9n^{2}-7\right)
Add -9 and 2 to get -7.
882n^{2}-98=909n^{2}-707
Use the distributive property to multiply 101 by 9n^{2}-7.
882n^{2}-98-909n^{2}=-707
Subtract 909n^{2} from both sides.
-27n^{2}-98=-707
Combine 882n^{2} and -909n^{2} to get -27n^{2}.
-27n^{2}-98+707=0
Add 707 to both sides.
-27n^{2}+609=0
Add -98 and 707 to get 609.
n=\frac{0±\sqrt{0^{2}-4\left(-27\right)\times 609}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, 0 for b, and 609 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-27\right)\times 609}}{2\left(-27\right)}
Square 0.
n=\frac{0±\sqrt{108\times 609}}{2\left(-27\right)}
Multiply -4 times -27.
n=\frac{0±\sqrt{65772}}{2\left(-27\right)}
Multiply 108 times 609.
n=\frac{0±18\sqrt{203}}{2\left(-27\right)}
Take the square root of 65772.
n=\frac{0±18\sqrt{203}}{-54}
Multiply 2 times -27.
n=-\frac{\sqrt{203}}{3}
Now solve the equation n=\frac{0±18\sqrt{203}}{-54} when ± is plus.
n=\frac{\sqrt{203}}{3}
Now solve the equation n=\frac{0±18\sqrt{203}}{-54} when ± is minus.
n=-\frac{\sqrt{203}}{3} n=\frac{\sqrt{203}}{3}
The equation is now solved.