Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)96}\\\end{array}
Use the 1^{st} digit 9 from dividend 96
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)96}\\\end{array}
Since 9 is less than 64, use the next digit 6 from dividend 96 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)96}\\\end{array}
Use the 2^{nd} digit 6 from dividend 96
\begin{array}{l}\phantom{64)}01\phantom{4}\\64\overline{)96}\\\phantom{64)}\underline{\phantom{}64\phantom{}}\\\phantom{64)}32\\\end{array}
Find closest multiple of 64 to 96. We see that 1 \times 64 = 64 is the nearest. Now subtract 64 from 96 to get reminder 32. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }32
Since 32 is less than 64, stop the division. The reminder is 32. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}