Evaluate
\frac{475}{6}\approx 79.166666667
Factor
\frac{5 ^ {2} \cdot 19}{2 \cdot 3} = 79\frac{1}{6} = 79.16666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)950}\\\end{array}
Use the 1^{st} digit 9 from dividend 950
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)950}\\\end{array}
Since 9 is less than 12, use the next digit 5 from dividend 950 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)950}\\\end{array}
Use the 2^{nd} digit 5 from dividend 950
\begin{array}{l}\phantom{12)}07\phantom{4}\\12\overline{)950}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)}11\\\end{array}
Find closest multiple of 12 to 95. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 95 to get reminder 11. Add 7 to quotient.
\begin{array}{l}\phantom{12)}07\phantom{5}\\12\overline{)950}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)}110\\\end{array}
Use the 3^{rd} digit 0 from dividend 950
\begin{array}{l}\phantom{12)}079\phantom{6}\\12\overline{)950}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)}110\\\phantom{12)}\underline{\phantom{}108\phantom{}}\\\phantom{12)99}2\\\end{array}
Find closest multiple of 12 to 110. We see that 9 \times 12 = 108 is the nearest. Now subtract 108 from 110 to get reminder 2. Add 9 to quotient.
\text{Quotient: }79 \text{Reminder: }2
Since 2 is less than 12, stop the division. The reminder is 2. The topmost line 079 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 79.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}