Evaluate
\frac{19}{18}\approx 1.055555556
Factor
\frac{19}{2 \cdot 3 ^ {2}} = 1\frac{1}{18} = 1.0555555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)95}\\\end{array}
Use the 1^{st} digit 9 from dividend 95
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)95}\\\end{array}
Since 9 is less than 90, use the next digit 5 from dividend 95 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)95}\\\end{array}
Use the 2^{nd} digit 5 from dividend 95
\begin{array}{l}\phantom{90)}01\phantom{4}\\90\overline{)95}\\\phantom{90)}\underline{\phantom{}90\phantom{}}\\\phantom{90)9}5\\\end{array}
Find closest multiple of 90 to 95. We see that 1 \times 90 = 90 is the nearest. Now subtract 90 from 95 to get reminder 5. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }5
Since 5 is less than 90, stop the division. The reminder is 5. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}