Evaluate
\frac{95}{17}\approx 5.588235294
Factor
\frac{5 \cdot 19}{17} = 5\frac{10}{17} = 5.588235294117647
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)95}\\\end{array}
Use the 1^{st} digit 9 from dividend 95
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)95}\\\end{array}
Since 9 is less than 17, use the next digit 5 from dividend 95 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)95}\\\end{array}
Use the 2^{nd} digit 5 from dividend 95
\begin{array}{l}\phantom{17)}05\phantom{4}\\17\overline{)95}\\\phantom{17)}\underline{\phantom{}85\phantom{}}\\\phantom{17)}10\\\end{array}
Find closest multiple of 17 to 95. We see that 5 \times 17 = 85 is the nearest. Now subtract 85 from 95 to get reminder 10. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }10
Since 10 is less than 17, stop the division. The reminder is 10. The topmost line 05 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}