Skip to main content
Solve for x
Tick mark Image
Graph

Share

\frac{\frac{1116+7}{12}-\frac{92\times 3+7}{3}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Multiply 93 and 12 to get 1116.
\frac{\frac{1123}{12}-\frac{92\times 3+7}{3}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Add 1116 and 7 to get 1123.
\frac{\frac{1123}{12}-\frac{276+7}{3}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Multiply 92 and 3 to get 276.
\frac{\frac{1123}{12}-\frac{283}{3}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Add 276 and 7 to get 283.
\frac{\frac{1123}{12}-\frac{1132}{12}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Least common multiple of 12 and 3 is 12. Convert \frac{1123}{12} and \frac{283}{3} to fractions with denominator 12.
\frac{\frac{1123-1132}{12}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Since \frac{1123}{12} and \frac{1132}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-9}{12}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Subtract 1132 from 1123 to get -9.
\frac{-\frac{3}{4}}{7,25-\frac{2\times 3+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Reduce the fraction \frac{-9}{12} to lowest terms by extracting and canceling out 3.
\frac{-\frac{3}{4}}{7,25-\frac{6+2}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Multiply 2 and 3 to get 6.
\frac{-\frac{3}{4}}{7,25-\frac{8}{3}\times 2,5}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Add 6 and 2 to get 8.
\frac{-\frac{3}{4}}{7,25-\frac{8}{3}\times \frac{5}{2}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Convert decimal number 2,5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{-\frac{3}{4}}{7,25-\frac{8\times 5}{3\times 2}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Multiply \frac{8}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{3}{4}}{7,25-\frac{40}{6}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Do the multiplications in the fraction \frac{8\times 5}{3\times 2}.
\frac{-\frac{3}{4}}{7,25-\frac{20}{3}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Reduce the fraction \frac{40}{6} to lowest terms by extracting and canceling out 2.
\frac{-\frac{3}{4}}{\frac{29}{4}-\frac{20}{3}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Convert decimal number 7,25 to fraction \frac{725}{100}. Reduce the fraction \frac{725}{100} to lowest terms by extracting and canceling out 25.
\frac{-\frac{3}{4}}{\frac{87}{12}-\frac{80}{12}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Least common multiple of 4 and 3 is 12. Convert \frac{29}{4} and \frac{20}{3} to fractions with denominator 12.
\frac{-\frac{3}{4}}{\frac{87-80}{12}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Since \frac{87}{12} and \frac{80}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{3}{4}}{\frac{7}{12}}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Subtract 80 from 87 to get 7.
-\frac{3}{4}\times \frac{12}{7}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Divide -\frac{3}{4} by \frac{7}{12} by multiplying -\frac{3}{4} by the reciprocal of \frac{7}{12}.
\frac{-3\times 12}{4\times 7}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Multiply -\frac{3}{4} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-36}{28}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Do the multiplications in the fraction \frac{-3\times 12}{4\times 7}.
-\frac{9}{7}=\frac{x}{\frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}}
Reduce the fraction \frac{-36}{28} to lowest terms by extracting and canceling out 4.
-\frac{9}{7}=\frac{x\times \frac{6\times 14+7}{14}}{\frac{5\times 3+2}{3}+1,75}
Divide x by \frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}} by multiplying x by the reciprocal of \frac{\frac{5\times 3+2}{3}+1,75}{\frac{6\times 14+7}{14}}.
-\frac{9}{7}=\frac{x\times \frac{84+7}{14}}{\frac{5\times 3+2}{3}+1,75}
Multiply 6 and 14 to get 84.
-\frac{9}{7}=\frac{x\times \frac{91}{14}}{\frac{5\times 3+2}{3}+1,75}
Add 84 and 7 to get 91.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{5\times 3+2}{3}+1,75}
Reduce the fraction \frac{91}{14} to lowest terms by extracting and canceling out 7.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{15+2}{3}+1,75}
Multiply 5 and 3 to get 15.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{17}{3}+1,75}
Add 15 and 2 to get 17.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{17}{3}+\frac{7}{4}}
Convert decimal number 1,75 to fraction \frac{175}{100}. Reduce the fraction \frac{175}{100} to lowest terms by extracting and canceling out 25.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{68}{12}+\frac{21}{12}}
Least common multiple of 3 and 4 is 12. Convert \frac{17}{3} and \frac{7}{4} to fractions with denominator 12.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{68+21}{12}}
Since \frac{68}{12} and \frac{21}{12} have the same denominator, add them by adding their numerators.
-\frac{9}{7}=\frac{x\times \frac{13}{2}}{\frac{89}{12}}
Add 68 and 21 to get 89.
-\frac{9}{7}=x\times \frac{78}{89}
Divide x\times \frac{13}{2} by \frac{89}{12} to get x\times \frac{78}{89}.
x\times \frac{78}{89}=-\frac{9}{7}
Swap sides so that all variable terms are on the left hand side.
x=-\frac{9}{7}\times \frac{89}{78}
Multiply both sides by \frac{89}{78}, the reciprocal of \frac{78}{89}.
x=\frac{-9\times 89}{7\times 78}
Multiply -\frac{9}{7} times \frac{89}{78} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-801}{546}
Do the multiplications in the fraction \frac{-9\times 89}{7\times 78}.
x=-\frac{267}{182}
Reduce the fraction \frac{-801}{546} to lowest terms by extracting and canceling out 3.