Evaluate
\frac{9}{8}=1.125
Factor
\frac{3 ^ {2}}{2 ^ {3}} = 1\frac{1}{8} = 1.125
Share
Copied to clipboard
\begin{array}{l}\phantom{816)}\phantom{1}\\816\overline{)918}\\\end{array}
Use the 1^{st} digit 9 from dividend 918
\begin{array}{l}\phantom{816)}0\phantom{2}\\816\overline{)918}\\\end{array}
Since 9 is less than 816, use the next digit 1 from dividend 918 and add 0 to the quotient
\begin{array}{l}\phantom{816)}0\phantom{3}\\816\overline{)918}\\\end{array}
Use the 2^{nd} digit 1 from dividend 918
\begin{array}{l}\phantom{816)}00\phantom{4}\\816\overline{)918}\\\end{array}
Since 91 is less than 816, use the next digit 8 from dividend 918 and add 0 to the quotient
\begin{array}{l}\phantom{816)}00\phantom{5}\\816\overline{)918}\\\end{array}
Use the 3^{rd} digit 8 from dividend 918
\begin{array}{l}\phantom{816)}001\phantom{6}\\816\overline{)918}\\\phantom{816)}\underline{\phantom{}816\phantom{}}\\\phantom{816)}102\\\end{array}
Find closest multiple of 816 to 918. We see that 1 \times 816 = 816 is the nearest. Now subtract 816 from 918 to get reminder 102. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }102
Since 102 is less than 816, stop the division. The reminder is 102. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}