Evaluate
\frac{911}{283}\approx 3.219081272
Factor
\frac{911}{283} = 3\frac{62}{283} = 3.2190812720848054
Share
Copied to clipboard
\begin{array}{l}\phantom{283)}\phantom{1}\\283\overline{)911}\\\end{array}
Use the 1^{st} digit 9 from dividend 911
\begin{array}{l}\phantom{283)}0\phantom{2}\\283\overline{)911}\\\end{array}
Since 9 is less than 283, use the next digit 1 from dividend 911 and add 0 to the quotient
\begin{array}{l}\phantom{283)}0\phantom{3}\\283\overline{)911}\\\end{array}
Use the 2^{nd} digit 1 from dividend 911
\begin{array}{l}\phantom{283)}00\phantom{4}\\283\overline{)911}\\\end{array}
Since 91 is less than 283, use the next digit 1 from dividend 911 and add 0 to the quotient
\begin{array}{l}\phantom{283)}00\phantom{5}\\283\overline{)911}\\\end{array}
Use the 3^{rd} digit 1 from dividend 911
\begin{array}{l}\phantom{283)}003\phantom{6}\\283\overline{)911}\\\phantom{283)}\underline{\phantom{}849\phantom{}}\\\phantom{283)9}62\\\end{array}
Find closest multiple of 283 to 911. We see that 3 \times 283 = 849 is the nearest. Now subtract 849 from 911 to get reminder 62. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }62
Since 62 is less than 283, stop the division. The reminder is 62. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}