Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{91}{\left(m-13\right)\left(m+13\right)}+\frac{7}{2\left(m+13\right)}
Factor m^{2}-169.
\frac{91\times 2}{2\left(m-13\right)\left(m+13\right)}+\frac{7\left(m-13\right)}{2\left(m-13\right)\left(m+13\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-13\right)\left(m+13\right) and 2\left(m+13\right) is 2\left(m-13\right)\left(m+13\right). Multiply \frac{91}{\left(m-13\right)\left(m+13\right)} times \frac{2}{2}. Multiply \frac{7}{2\left(m+13\right)} times \frac{m-13}{m-13}.
\frac{91\times 2+7\left(m-13\right)}{2\left(m-13\right)\left(m+13\right)}
Since \frac{91\times 2}{2\left(m-13\right)\left(m+13\right)} and \frac{7\left(m-13\right)}{2\left(m-13\right)\left(m+13\right)} have the same denominator, add them by adding their numerators.
\frac{182+7m-91}{2\left(m-13\right)\left(m+13\right)}
Do the multiplications in 91\times 2+7\left(m-13\right).
\frac{91+7m}{2\left(m-13\right)\left(m+13\right)}
Combine like terms in 182+7m-91.
\frac{7\left(m+13\right)}{2\left(m-13\right)\left(m+13\right)}
Factor the expressions that are not already factored in \frac{91+7m}{2\left(m-13\right)\left(m+13\right)}.
\frac{7}{2\left(m-13\right)}
Cancel out m+13 in both numerator and denominator.
\frac{7}{2m-26}
Expand 2\left(m-13\right).
\frac{91}{\left(m-13\right)\left(m+13\right)}+\frac{7}{2\left(m+13\right)}
Factor m^{2}-169.
\frac{91\times 2}{2\left(m-13\right)\left(m+13\right)}+\frac{7\left(m-13\right)}{2\left(m-13\right)\left(m+13\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-13\right)\left(m+13\right) and 2\left(m+13\right) is 2\left(m-13\right)\left(m+13\right). Multiply \frac{91}{\left(m-13\right)\left(m+13\right)} times \frac{2}{2}. Multiply \frac{7}{2\left(m+13\right)} times \frac{m-13}{m-13}.
\frac{91\times 2+7\left(m-13\right)}{2\left(m-13\right)\left(m+13\right)}
Since \frac{91\times 2}{2\left(m-13\right)\left(m+13\right)} and \frac{7\left(m-13\right)}{2\left(m-13\right)\left(m+13\right)} have the same denominator, add them by adding their numerators.
\frac{182+7m-91}{2\left(m-13\right)\left(m+13\right)}
Do the multiplications in 91\times 2+7\left(m-13\right).
\frac{91+7m}{2\left(m-13\right)\left(m+13\right)}
Combine like terms in 182+7m-91.
\frac{7\left(m+13\right)}{2\left(m-13\right)\left(m+13\right)}
Factor the expressions that are not already factored in \frac{91+7m}{2\left(m-13\right)\left(m+13\right)}.
\frac{7}{2\left(m-13\right)}
Cancel out m+13 in both numerator and denominator.
\frac{7}{2m-26}
Expand 2\left(m-13\right).