Evaluate
\frac{91}{10}=9.1
Factor
\frac{7 \cdot 13}{2 \cdot 5} = 9\frac{1}{10} = 9.1
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)91}\\\end{array}
Use the 1^{st} digit 9 from dividend 91
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)91}\\\end{array}
Since 9 is less than 10, use the next digit 1 from dividend 91 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)91}\\\end{array}
Use the 2^{nd} digit 1 from dividend 91
\begin{array}{l}\phantom{10)}09\phantom{4}\\10\overline{)91}\\\phantom{10)}\underline{\phantom{}90\phantom{}}\\\phantom{10)9}1\\\end{array}
Find closest multiple of 10 to 91. We see that 9 \times 10 = 90 is the nearest. Now subtract 90 from 91 to get reminder 1. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }1
Since 1 is less than 10, stop the division. The reminder is 1. The topmost line 09 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}