Evaluate
\frac{100}{11}\approx 9.090909091
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{11} = 9\frac{1}{11} = 9.090909090909092
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)900}\\\end{array}
Since 9 is less than 99, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)900}\\\end{array}
Since 90 is less than 99, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)900}\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{99)}009\phantom{6}\\99\overline{)900}\\\phantom{99)}\underline{\phantom{}891\phantom{}}\\\phantom{99)99}9\\\end{array}
Find closest multiple of 99 to 900. We see that 9 \times 99 = 891 is the nearest. Now subtract 891 from 900 to get reminder 9. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }9
Since 9 is less than 99, stop the division. The reminder is 9. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}