Evaluate
\frac{75}{4}=18.75
Factor
\frac{3 \cdot 5 ^ {2}}{2 ^ {2}} = 18\frac{3}{4} = 18.75
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)900}\\\end{array}
Use the 1^{st} digit 9 from dividend 900
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)900}\\\end{array}
Since 9 is less than 48, use the next digit 0 from dividend 900 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 900
\begin{array}{l}\phantom{48)}01\phantom{4}\\48\overline{)900}\\\phantom{48)}\underline{\phantom{}48\phantom{9}}\\\phantom{48)}42\\\end{array}
Find closest multiple of 48 to 90. We see that 1 \times 48 = 48 is the nearest. Now subtract 48 from 90 to get reminder 42. Add 1 to quotient.
\begin{array}{l}\phantom{48)}01\phantom{5}\\48\overline{)900}\\\phantom{48)}\underline{\phantom{}48\phantom{9}}\\\phantom{48)}420\\\end{array}
Use the 3^{rd} digit 0 from dividend 900
\begin{array}{l}\phantom{48)}018\phantom{6}\\48\overline{)900}\\\phantom{48)}\underline{\phantom{}48\phantom{9}}\\\phantom{48)}420\\\phantom{48)}\underline{\phantom{}384\phantom{}}\\\phantom{48)9}36\\\end{array}
Find closest multiple of 48 to 420. We see that 8 \times 48 = 384 is the nearest. Now subtract 384 from 420 to get reminder 36. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }36
Since 36 is less than 48, stop the division. The reminder is 36. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}