Solve for x
x=\frac{26}{81}\approx 0.320987654
Graph
Share
Copied to clipboard
\left(x+15\right)\times 90x+\left(15x+6\right)\times 51=18\left(x+15\right)\left(5x+2\right)
Variable x cannot be equal to any of the values -15,-\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by 3\left(x+15\right)\left(5x+2\right), the least common multiple of 15x+6,x+15.
\left(90x+1350\right)x+\left(15x+6\right)\times 51=18\left(x+15\right)\left(5x+2\right)
Use the distributive property to multiply x+15 by 90.
90x^{2}+1350x+\left(15x+6\right)\times 51=18\left(x+15\right)\left(5x+2\right)
Use the distributive property to multiply 90x+1350 by x.
90x^{2}+1350x+765x+306=18\left(x+15\right)\left(5x+2\right)
Use the distributive property to multiply 15x+6 by 51.
90x^{2}+2115x+306=18\left(x+15\right)\left(5x+2\right)
Combine 1350x and 765x to get 2115x.
90x^{2}+2115x+306=\left(18x+270\right)\left(5x+2\right)
Use the distributive property to multiply 18 by x+15.
90x^{2}+2115x+306=90x^{2}+1386x+540
Use the distributive property to multiply 18x+270 by 5x+2 and combine like terms.
90x^{2}+2115x+306-90x^{2}=1386x+540
Subtract 90x^{2} from both sides.
2115x+306=1386x+540
Combine 90x^{2} and -90x^{2} to get 0.
2115x+306-1386x=540
Subtract 1386x from both sides.
729x+306=540
Combine 2115x and -1386x to get 729x.
729x=540-306
Subtract 306 from both sides.
729x=234
Subtract 306 from 540 to get 234.
x=\frac{234}{729}
Divide both sides by 729.
x=\frac{26}{81}
Reduce the fraction \frac{234}{729} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}