Solve for a
a = \frac{\sqrt{2581} + 9}{10} \approx 5.980354318
a=\frac{9-\sqrt{2581}}{10}\approx -4.180354318
Share
Copied to clipboard
\left(a-5\right)\times 90+\left(a+5\right)\times 90=100\left(a-5\right)\left(a+5\right)
Variable a cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(a-5\right)\left(a+5\right), the least common multiple of a+5,a-5.
90a-450+\left(a+5\right)\times 90=100\left(a-5\right)\left(a+5\right)
Use the distributive property to multiply a-5 by 90.
90a-450+90a+450=100\left(a-5\right)\left(a+5\right)
Use the distributive property to multiply a+5 by 90.
180a-450+450=100\left(a-5\right)\left(a+5\right)
Combine 90a and 90a to get 180a.
180a=100\left(a-5\right)\left(a+5\right)
Add -450 and 450 to get 0.
180a=\left(100a-500\right)\left(a+5\right)
Use the distributive property to multiply 100 by a-5.
180a=100a^{2}-2500
Use the distributive property to multiply 100a-500 by a+5 and combine like terms.
180a-100a^{2}=-2500
Subtract 100a^{2} from both sides.
180a-100a^{2}+2500=0
Add 2500 to both sides.
-100a^{2}+180a+2500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-180±\sqrt{180^{2}-4\left(-100\right)\times 2500}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, 180 for b, and 2500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-180±\sqrt{32400-4\left(-100\right)\times 2500}}{2\left(-100\right)}
Square 180.
a=\frac{-180±\sqrt{32400+400\times 2500}}{2\left(-100\right)}
Multiply -4 times -100.
a=\frac{-180±\sqrt{32400+1000000}}{2\left(-100\right)}
Multiply 400 times 2500.
a=\frac{-180±\sqrt{1032400}}{2\left(-100\right)}
Add 32400 to 1000000.
a=\frac{-180±20\sqrt{2581}}{2\left(-100\right)}
Take the square root of 1032400.
a=\frac{-180±20\sqrt{2581}}{-200}
Multiply 2 times -100.
a=\frac{20\sqrt{2581}-180}{-200}
Now solve the equation a=\frac{-180±20\sqrt{2581}}{-200} when ± is plus. Add -180 to 20\sqrt{2581}.
a=\frac{9-\sqrt{2581}}{10}
Divide -180+20\sqrt{2581} by -200.
a=\frac{-20\sqrt{2581}-180}{-200}
Now solve the equation a=\frac{-180±20\sqrt{2581}}{-200} when ± is minus. Subtract 20\sqrt{2581} from -180.
a=\frac{\sqrt{2581}+9}{10}
Divide -180-20\sqrt{2581} by -200.
a=\frac{9-\sqrt{2581}}{10} a=\frac{\sqrt{2581}+9}{10}
The equation is now solved.
\left(a-5\right)\times 90+\left(a+5\right)\times 90=100\left(a-5\right)\left(a+5\right)
Variable a cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(a-5\right)\left(a+5\right), the least common multiple of a+5,a-5.
90a-450+\left(a+5\right)\times 90=100\left(a-5\right)\left(a+5\right)
Use the distributive property to multiply a-5 by 90.
90a-450+90a+450=100\left(a-5\right)\left(a+5\right)
Use the distributive property to multiply a+5 by 90.
180a-450+450=100\left(a-5\right)\left(a+5\right)
Combine 90a and 90a to get 180a.
180a=100\left(a-5\right)\left(a+5\right)
Add -450 and 450 to get 0.
180a=\left(100a-500\right)\left(a+5\right)
Use the distributive property to multiply 100 by a-5.
180a=100a^{2}-2500
Use the distributive property to multiply 100a-500 by a+5 and combine like terms.
180a-100a^{2}=-2500
Subtract 100a^{2} from both sides.
-100a^{2}+180a=-2500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-100a^{2}+180a}{-100}=-\frac{2500}{-100}
Divide both sides by -100.
a^{2}+\frac{180}{-100}a=-\frac{2500}{-100}
Dividing by -100 undoes the multiplication by -100.
a^{2}-\frac{9}{5}a=-\frac{2500}{-100}
Reduce the fraction \frac{180}{-100} to lowest terms by extracting and canceling out 20.
a^{2}-\frac{9}{5}a=25
Divide -2500 by -100.
a^{2}-\frac{9}{5}a+\left(-\frac{9}{10}\right)^{2}=25+\left(-\frac{9}{10}\right)^{2}
Divide -\frac{9}{5}, the coefficient of the x term, by 2 to get -\frac{9}{10}. Then add the square of -\frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{9}{5}a+\frac{81}{100}=25+\frac{81}{100}
Square -\frac{9}{10} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{9}{5}a+\frac{81}{100}=\frac{2581}{100}
Add 25 to \frac{81}{100}.
\left(a-\frac{9}{10}\right)^{2}=\frac{2581}{100}
Factor a^{2}-\frac{9}{5}a+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{9}{10}\right)^{2}}=\sqrt{\frac{2581}{100}}
Take the square root of both sides of the equation.
a-\frac{9}{10}=\frac{\sqrt{2581}}{10} a-\frac{9}{10}=-\frac{\sqrt{2581}}{10}
Simplify.
a=\frac{\sqrt{2581}+9}{10} a=\frac{9-\sqrt{2581}}{10}
Add \frac{9}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}