\frac { 9,8 } { 2 } x ^ { 2 } - 20 t - 50 = 0
Solve for t
t=\frac{49x^{2}}{200}-2,5
Solve for x
x=\frac{\sqrt{\frac{800t+2000}{49}}}{2}
x=-\frac{\sqrt{\frac{800t+2000}{49}}}{2}\text{, }t\geq -2,5
Graph
Share
Copied to clipboard
\frac{98}{20}x^{2}-20t-50=0
Expand \frac{9,8}{2} by multiplying both numerator and the denominator by 10.
\frac{49}{10}x^{2}-20t-50=0
Reduce the fraction \frac{98}{20} to lowest terms by extracting and canceling out 2.
-20t-50=-\frac{49}{10}x^{2}
Subtract \frac{49}{10}x^{2} from both sides. Anything subtracted from zero gives its negation.
-20t=-\frac{49}{10}x^{2}+50
Add 50 to both sides.
-20t=-\frac{49x^{2}}{10}+50
The equation is in standard form.
\frac{-20t}{-20}=\frac{-\frac{49x^{2}}{10}+50}{-20}
Divide both sides by -20.
t=\frac{-\frac{49x^{2}}{10}+50}{-20}
Dividing by -20 undoes the multiplication by -20.
t=\frac{49x^{2}}{200}-\frac{5}{2}
Divide -\frac{49x^{2}}{10}+50 by -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}