\frac { 9,5 + 11 } { 20 + x } = 10
Solve for x
x=-17,95
Graph
Share
Copied to clipboard
9,5+11=10\left(x+20\right)
Variable x cannot be equal to -20 since division by zero is not defined. Multiply both sides of the equation by x+20.
20,5=10\left(x+20\right)
Add 9,5 and 11 to get 20,5.
20,5=10x+200
Use the distributive property to multiply 10 by x+20.
10x+200=20,5
Swap sides so that all variable terms are on the left hand side.
10x=20,5-200
Subtract 200 from both sides.
10x=-179,5
Subtract 200 from 20,5 to get -179,5.
x=\frac{-179,5}{10}
Divide both sides by 10.
x=\frac{-1795}{100}
Expand \frac{-179,5}{10} by multiplying both numerator and the denominator by 10.
x=-\frac{359}{20}
Reduce the fraction \frac{-1795}{100} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}