Evaluate
\frac{27}{10}=2.7
Factor
\frac{3 ^ {3}}{2 \cdot 5} = 2\frac{7}{10} = 2.7
Graph
Share
Copied to clipboard
\frac{\left(9y-36\right)\times 18}{12\times 5\left(y-4\right)}
Divide \frac{9y-36}{12} by \frac{5\left(y-4\right)}{18} by multiplying \frac{9y-36}{12} by the reciprocal of \frac{5\left(y-4\right)}{18}.
\frac{3\left(9y-36\right)}{2\times 5\left(y-4\right)}
Cancel out 6 in both numerator and denominator.
\frac{3\left(9y-36\right)}{10\left(y-4\right)}
Multiply 2 and 5 to get 10.
\frac{3\times 9\left(y-4\right)}{10\left(y-4\right)}
Factor the expressions that are not already factored.
\frac{3\times 9}{10}
Cancel out y-4 in both numerator and denominator.
\frac{27}{10}
Multiply 3 and 9 to get 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}