Solve for x
x = \frac{12}{7} = 1\frac{5}{7} \approx 1.714285714
Graph
Share
Copied to clipboard
9x-4=\left(3+\frac{2}{x-2}\right)\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
9x-4=\left(\frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}\right)\left(3-\frac{2}{x-2}\right)\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
9x-4=\frac{3\left(x-2\right)+2}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Since \frac{3\left(x-2\right)}{x-2} and \frac{2}{x-2} have the same denominator, add them by adding their numerators.
9x-4=\frac{3x-6+2}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Do the multiplications in 3\left(x-2\right)+2.
9x-4=\frac{3x-4}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Combine like terms in 3x-6+2.
9x-4=\frac{3x-4}{x-2}\left(\frac{3\left(x-2\right)}{x-2}-\frac{2}{x-2}\right)\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
9x-4=\frac{3x-4}{x-2}\times \frac{3\left(x-2\right)-2}{x-2}\left(x-2\right)
Since \frac{3\left(x-2\right)}{x-2} and \frac{2}{x-2} have the same denominator, subtract them by subtracting their numerators.
9x-4=\frac{3x-4}{x-2}\times \frac{3x-6-2}{x-2}\left(x-2\right)
Do the multiplications in 3\left(x-2\right)-2.
9x-4=\frac{3x-4}{x-2}\times \frac{3x-8}{x-2}\left(x-2\right)
Combine like terms in 3x-6-2.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)}{\left(x-2\right)\left(x-2\right)}\left(x-2\right)
Multiply \frac{3x-4}{x-2} times \frac{3x-8}{x-2} by multiplying numerator times numerator and denominator times denominator.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x-2\right)}
Express \frac{\left(3x-4\right)\left(3x-8\right)}{\left(x-2\right)\left(x-2\right)}\left(x-2\right) as a single fraction.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)^{2}}
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x-4-\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4}=0
Subtract \frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4} from both sides.
9x-4-\frac{\left(9x^{2}-36x+32\right)\left(x-2\right)}{x^{2}-4x+4}=0
Use the distributive property to multiply 3x-4 by 3x-8 and combine like terms.
9x-4-\frac{9x^{3}-54x^{2}+104x-64}{x^{2}-4x+4}=0
Use the distributive property to multiply 9x^{2}-36x+32 by x-2 and combine like terms.
9x-4-\frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}}=0
Factor x^{2}-4x+4.
\frac{\left(9x-4\right)\left(x-2\right)^{2}}{\left(x-2\right)^{2}}-\frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x-4 times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(9x-4\right)\left(x-2\right)^{2}-\left(9x^{3}-54x^{2}+104x-64\right)}{\left(x-2\right)^{2}}=0
Since \frac{\left(9x-4\right)\left(x-2\right)^{2}}{\left(x-2\right)^{2}} and \frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{3}-36x^{2}+36x-4x^{2}+16x-16-9x^{3}+54x^{2}-104x+64}{\left(x-2\right)^{2}}=0
Do the multiplications in \left(9x-4\right)\left(x-2\right)^{2}-\left(9x^{3}-54x^{2}+104x-64\right).
\frac{14x^{2}-52x+48}{\left(x-2\right)^{2}}=0
Combine like terms in 9x^{3}-36x^{2}+36x-4x^{2}+16x-16-9x^{3}+54x^{2}-104x+64.
14x^{2}-52x+48=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}.
7x^{2}-26x+24=0
Divide both sides by 2.
a+b=-26 ab=7\times 24=168
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
-1,-168 -2,-84 -3,-56 -4,-42 -6,-28 -7,-24 -8,-21 -12,-14
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 168.
-1-168=-169 -2-84=-86 -3-56=-59 -4-42=-46 -6-28=-34 -7-24=-31 -8-21=-29 -12-14=-26
Calculate the sum for each pair.
a=-14 b=-12
The solution is the pair that gives sum -26.
\left(7x^{2}-14x\right)+\left(-12x+24\right)
Rewrite 7x^{2}-26x+24 as \left(7x^{2}-14x\right)+\left(-12x+24\right).
7x\left(x-2\right)-12\left(x-2\right)
Factor out 7x in the first and -12 in the second group.
\left(x-2\right)\left(7x-12\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{12}{7}
To find equation solutions, solve x-2=0 and 7x-12=0.
x=\frac{12}{7}
Variable x cannot be equal to 2.
9x-4=\left(3+\frac{2}{x-2}\right)\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
9x-4=\left(\frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}\right)\left(3-\frac{2}{x-2}\right)\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
9x-4=\frac{3\left(x-2\right)+2}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Since \frac{3\left(x-2\right)}{x-2} and \frac{2}{x-2} have the same denominator, add them by adding their numerators.
9x-4=\frac{3x-6+2}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Do the multiplications in 3\left(x-2\right)+2.
9x-4=\frac{3x-4}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Combine like terms in 3x-6+2.
9x-4=\frac{3x-4}{x-2}\left(\frac{3\left(x-2\right)}{x-2}-\frac{2}{x-2}\right)\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
9x-4=\frac{3x-4}{x-2}\times \frac{3\left(x-2\right)-2}{x-2}\left(x-2\right)
Since \frac{3\left(x-2\right)}{x-2} and \frac{2}{x-2} have the same denominator, subtract them by subtracting their numerators.
9x-4=\frac{3x-4}{x-2}\times \frac{3x-6-2}{x-2}\left(x-2\right)
Do the multiplications in 3\left(x-2\right)-2.
9x-4=\frac{3x-4}{x-2}\times \frac{3x-8}{x-2}\left(x-2\right)
Combine like terms in 3x-6-2.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)}{\left(x-2\right)\left(x-2\right)}\left(x-2\right)
Multiply \frac{3x-4}{x-2} times \frac{3x-8}{x-2} by multiplying numerator times numerator and denominator times denominator.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x-2\right)}
Express \frac{\left(3x-4\right)\left(3x-8\right)}{\left(x-2\right)\left(x-2\right)}\left(x-2\right) as a single fraction.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)^{2}}
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x-4-\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4}=0
Subtract \frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4} from both sides.
9x-4-\frac{\left(9x^{2}-36x+32\right)\left(x-2\right)}{x^{2}-4x+4}=0
Use the distributive property to multiply 3x-4 by 3x-8 and combine like terms.
9x-4-\frac{9x^{3}-54x^{2}+104x-64}{x^{2}-4x+4}=0
Use the distributive property to multiply 9x^{2}-36x+32 by x-2 and combine like terms.
9x-4-\frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}}=0
Factor x^{2}-4x+4.
\frac{\left(9x-4\right)\left(x-2\right)^{2}}{\left(x-2\right)^{2}}-\frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x-4 times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(9x-4\right)\left(x-2\right)^{2}-\left(9x^{3}-54x^{2}+104x-64\right)}{\left(x-2\right)^{2}}=0
Since \frac{\left(9x-4\right)\left(x-2\right)^{2}}{\left(x-2\right)^{2}} and \frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{3}-36x^{2}+36x-4x^{2}+16x-16-9x^{3}+54x^{2}-104x+64}{\left(x-2\right)^{2}}=0
Do the multiplications in \left(9x-4\right)\left(x-2\right)^{2}-\left(9x^{3}-54x^{2}+104x-64\right).
\frac{14x^{2}-52x+48}{\left(x-2\right)^{2}}=0
Combine like terms in 9x^{3}-36x^{2}+36x-4x^{2}+16x-16-9x^{3}+54x^{2}-104x+64.
14x^{2}-52x+48=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 14\times 48}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, -52 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 14\times 48}}{2\times 14}
Square -52.
x=\frac{-\left(-52\right)±\sqrt{2704-56\times 48}}{2\times 14}
Multiply -4 times 14.
x=\frac{-\left(-52\right)±\sqrt{2704-2688}}{2\times 14}
Multiply -56 times 48.
x=\frac{-\left(-52\right)±\sqrt{16}}{2\times 14}
Add 2704 to -2688.
x=\frac{-\left(-52\right)±4}{2\times 14}
Take the square root of 16.
x=\frac{52±4}{2\times 14}
The opposite of -52 is 52.
x=\frac{52±4}{28}
Multiply 2 times 14.
x=\frac{56}{28}
Now solve the equation x=\frac{52±4}{28} when ± is plus. Add 52 to 4.
x=2
Divide 56 by 28.
x=\frac{48}{28}
Now solve the equation x=\frac{52±4}{28} when ± is minus. Subtract 4 from 52.
x=\frac{12}{7}
Reduce the fraction \frac{48}{28} to lowest terms by extracting and canceling out 4.
x=2 x=\frac{12}{7}
The equation is now solved.
x=\frac{12}{7}
Variable x cannot be equal to 2.
9x-4=\left(3+\frac{2}{x-2}\right)\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
9x-4=\left(\frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}\right)\left(3-\frac{2}{x-2}\right)\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
9x-4=\frac{3\left(x-2\right)+2}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Since \frac{3\left(x-2\right)}{x-2} and \frac{2}{x-2} have the same denominator, add them by adding their numerators.
9x-4=\frac{3x-6+2}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Do the multiplications in 3\left(x-2\right)+2.
9x-4=\frac{3x-4}{x-2}\left(3-\frac{2}{x-2}\right)\left(x-2\right)
Combine like terms in 3x-6+2.
9x-4=\frac{3x-4}{x-2}\left(\frac{3\left(x-2\right)}{x-2}-\frac{2}{x-2}\right)\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
9x-4=\frac{3x-4}{x-2}\times \frac{3\left(x-2\right)-2}{x-2}\left(x-2\right)
Since \frac{3\left(x-2\right)}{x-2} and \frac{2}{x-2} have the same denominator, subtract them by subtracting their numerators.
9x-4=\frac{3x-4}{x-2}\times \frac{3x-6-2}{x-2}\left(x-2\right)
Do the multiplications in 3\left(x-2\right)-2.
9x-4=\frac{3x-4}{x-2}\times \frac{3x-8}{x-2}\left(x-2\right)
Combine like terms in 3x-6-2.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)}{\left(x-2\right)\left(x-2\right)}\left(x-2\right)
Multiply \frac{3x-4}{x-2} times \frac{3x-8}{x-2} by multiplying numerator times numerator and denominator times denominator.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)\left(x-2\right)}
Express \frac{\left(3x-4\right)\left(3x-8\right)}{\left(x-2\right)\left(x-2\right)}\left(x-2\right) as a single fraction.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{\left(x-2\right)^{2}}
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
9x-4=\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x-4-\frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4}=0
Subtract \frac{\left(3x-4\right)\left(3x-8\right)\left(x-2\right)}{x^{2}-4x+4} from both sides.
9x-4-\frac{\left(9x^{2}-36x+32\right)\left(x-2\right)}{x^{2}-4x+4}=0
Use the distributive property to multiply 3x-4 by 3x-8 and combine like terms.
9x-4-\frac{9x^{3}-54x^{2}+104x-64}{x^{2}-4x+4}=0
Use the distributive property to multiply 9x^{2}-36x+32 by x-2 and combine like terms.
9x-4-\frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}}=0
Factor x^{2}-4x+4.
\frac{\left(9x-4\right)\left(x-2\right)^{2}}{\left(x-2\right)^{2}}-\frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 9x-4 times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(9x-4\right)\left(x-2\right)^{2}-\left(9x^{3}-54x^{2}+104x-64\right)}{\left(x-2\right)^{2}}=0
Since \frac{\left(9x-4\right)\left(x-2\right)^{2}}{\left(x-2\right)^{2}} and \frac{9x^{3}-54x^{2}+104x-64}{\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{3}-36x^{2}+36x-4x^{2}+16x-16-9x^{3}+54x^{2}-104x+64}{\left(x-2\right)^{2}}=0
Do the multiplications in \left(9x-4\right)\left(x-2\right)^{2}-\left(9x^{3}-54x^{2}+104x-64\right).
\frac{14x^{2}-52x+48}{\left(x-2\right)^{2}}=0
Combine like terms in 9x^{3}-36x^{2}+36x-4x^{2}+16x-16-9x^{3}+54x^{2}-104x+64.
14x^{2}-52x+48=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)^{2}.
14x^{2}-52x=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
\frac{14x^{2}-52x}{14}=-\frac{48}{14}
Divide both sides by 14.
x^{2}+\left(-\frac{52}{14}\right)x=-\frac{48}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}-\frac{26}{7}x=-\frac{48}{14}
Reduce the fraction \frac{-52}{14} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{26}{7}x=-\frac{24}{7}
Reduce the fraction \frac{-48}{14} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{26}{7}x+\left(-\frac{13}{7}\right)^{2}=-\frac{24}{7}+\left(-\frac{13}{7}\right)^{2}
Divide -\frac{26}{7}, the coefficient of the x term, by 2 to get -\frac{13}{7}. Then add the square of -\frac{13}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{26}{7}x+\frac{169}{49}=-\frac{24}{7}+\frac{169}{49}
Square -\frac{13}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{26}{7}x+\frac{169}{49}=\frac{1}{49}
Add -\frac{24}{7} to \frac{169}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{7}\right)^{2}=\frac{1}{49}
Factor x^{2}-\frac{26}{7}x+\frac{169}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{7}\right)^{2}}=\sqrt{\frac{1}{49}}
Take the square root of both sides of the equation.
x-\frac{13}{7}=\frac{1}{7} x-\frac{13}{7}=-\frac{1}{7}
Simplify.
x=2 x=\frac{12}{7}
Add \frac{13}{7} to both sides of the equation.
x=\frac{12}{7}
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}