Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x\left(9x-13\right)=-8\left(-3x+5\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 72x, the least common multiple of 8,-9x.
81x^{2}-117x=-8\left(-3x+5\right)
Use the distributive property to multiply 9x by 9x-13.
81x^{2}-117x=24x-40
Use the distributive property to multiply -8 by -3x+5.
81x^{2}-117x-24x=-40
Subtract 24x from both sides.
81x^{2}-141x=-40
Combine -117x and -24x to get -141x.
81x^{2}-141x+40=0
Add 40 to both sides.
x=\frac{-\left(-141\right)±\sqrt{\left(-141\right)^{2}-4\times 81\times 40}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, -141 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-141\right)±\sqrt{19881-4\times 81\times 40}}{2\times 81}
Square -141.
x=\frac{-\left(-141\right)±\sqrt{19881-324\times 40}}{2\times 81}
Multiply -4 times 81.
x=\frac{-\left(-141\right)±\sqrt{19881-12960}}{2\times 81}
Multiply -324 times 40.
x=\frac{-\left(-141\right)±\sqrt{6921}}{2\times 81}
Add 19881 to -12960.
x=\frac{-\left(-141\right)±3\sqrt{769}}{2\times 81}
Take the square root of 6921.
x=\frac{141±3\sqrt{769}}{2\times 81}
The opposite of -141 is 141.
x=\frac{141±3\sqrt{769}}{162}
Multiply 2 times 81.
x=\frac{3\sqrt{769}+141}{162}
Now solve the equation x=\frac{141±3\sqrt{769}}{162} when ± is plus. Add 141 to 3\sqrt{769}.
x=\frac{\sqrt{769}+47}{54}
Divide 141+3\sqrt{769} by 162.
x=\frac{141-3\sqrt{769}}{162}
Now solve the equation x=\frac{141±3\sqrt{769}}{162} when ± is minus. Subtract 3\sqrt{769} from 141.
x=\frac{47-\sqrt{769}}{54}
Divide 141-3\sqrt{769} by 162.
x=\frac{\sqrt{769}+47}{54} x=\frac{47-\sqrt{769}}{54}
The equation is now solved.
9x\left(9x-13\right)=-8\left(-3x+5\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 72x, the least common multiple of 8,-9x.
81x^{2}-117x=-8\left(-3x+5\right)
Use the distributive property to multiply 9x by 9x-13.
81x^{2}-117x=24x-40
Use the distributive property to multiply -8 by -3x+5.
81x^{2}-117x-24x=-40
Subtract 24x from both sides.
81x^{2}-141x=-40
Combine -117x and -24x to get -141x.
\frac{81x^{2}-141x}{81}=-\frac{40}{81}
Divide both sides by 81.
x^{2}+\left(-\frac{141}{81}\right)x=-\frac{40}{81}
Dividing by 81 undoes the multiplication by 81.
x^{2}-\frac{47}{27}x=-\frac{40}{81}
Reduce the fraction \frac{-141}{81} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{47}{27}x+\left(-\frac{47}{54}\right)^{2}=-\frac{40}{81}+\left(-\frac{47}{54}\right)^{2}
Divide -\frac{47}{27}, the coefficient of the x term, by 2 to get -\frac{47}{54}. Then add the square of -\frac{47}{54} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{47}{27}x+\frac{2209}{2916}=-\frac{40}{81}+\frac{2209}{2916}
Square -\frac{47}{54} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{47}{27}x+\frac{2209}{2916}=\frac{769}{2916}
Add -\frac{40}{81} to \frac{2209}{2916} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{47}{54}\right)^{2}=\frac{769}{2916}
Factor x^{2}-\frac{47}{27}x+\frac{2209}{2916}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{47}{54}\right)^{2}}=\sqrt{\frac{769}{2916}}
Take the square root of both sides of the equation.
x-\frac{47}{54}=\frac{\sqrt{769}}{54} x-\frac{47}{54}=-\frac{\sqrt{769}}{54}
Simplify.
x=\frac{\sqrt{769}+47}{54} x=\frac{47-\sqrt{769}}{54}
Add \frac{47}{54} to both sides of the equation.