Evaluate
\frac{3\left(x-7\right)\left(3x-1\right)}{7x\left(x-3\right)}
Expand
\frac{3\left(3x^{2}-22x+7\right)}{7x\left(x-3\right)}
Graph
Share
Copied to clipboard
\frac{\left(9x^{2}-3x\right)\left(x^{2}-14x+49\right)}{\left(x^{2}-10x+21\right)\times 7x^{2}}
Divide \frac{9x^{2}-3x}{x^{2}-10x+21} by \frac{7x^{2}}{x^{2}-14x+49} by multiplying \frac{9x^{2}-3x}{x^{2}-10x+21} by the reciprocal of \frac{7x^{2}}{x^{2}-14x+49}.
\frac{3x\left(3x-1\right)\left(x-7\right)^{2}}{7\left(x-7\right)\left(x-3\right)x^{2}}
Factor the expressions that are not already factored.
\frac{3\left(x-7\right)\left(3x-1\right)}{7x\left(x-3\right)}
Cancel out x\left(x-7\right) in both numerator and denominator.
\frac{9x^{2}-66x+21}{7x^{2}-21x}
Expand the expression.
\frac{\left(9x^{2}-3x\right)\left(x^{2}-14x+49\right)}{\left(x^{2}-10x+21\right)\times 7x^{2}}
Divide \frac{9x^{2}-3x}{x^{2}-10x+21} by \frac{7x^{2}}{x^{2}-14x+49} by multiplying \frac{9x^{2}-3x}{x^{2}-10x+21} by the reciprocal of \frac{7x^{2}}{x^{2}-14x+49}.
\frac{3x\left(3x-1\right)\left(x-7\right)^{2}}{7\left(x-7\right)\left(x-3\right)x^{2}}
Factor the expressions that are not already factored.
\frac{3\left(x-7\right)\left(3x-1\right)}{7x\left(x-3\right)}
Cancel out x\left(x-7\right) in both numerator and denominator.
\frac{9x^{2}-66x+21}{7x^{2}-21x}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}