Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Divide \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} by \frac{6x+10y}{5x-25y} by multiplying \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} by the reciprocal of \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Factor the expressions that are not already factored in \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Cancel out \left(3x-5y\right)\left(3x+5y\right) in both numerator and denominator.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Multiply \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Cancel out 9x^{2}+15xy+25y^{2} in both numerator and denominator.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Use the distributive property to multiply 5 by x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Use the distributive property to multiply 2 by 9x^{2}-18xy+5y^{2}.
\frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Divide \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} by \frac{6x+10y}{5x-25y} by multiplying \frac{9x^{2}-25y^{2}}{27x^{3}-125y^{3}} by the reciprocal of \frac{6x+10y}{5x-25y}.
\frac{5\left(x-5y\right)\left(3x-5y\right)\left(3x+5y\right)}{2\left(3x-5y\right)\left(3x+5y\right)\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Factor the expressions that are not already factored in \frac{\left(9x^{2}-25y^{2}\right)\left(5x-25y\right)}{\left(27x^{3}-125y^{3}\right)\left(6x+10y\right)}.
\frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)}\times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}}
Cancel out \left(3x-5y\right)\left(3x+5y\right) in both numerator and denominator.
\frac{5\left(x-5y\right)\left(9x^{2}+15xy+25y^{2}\right)}{2\left(9x^{2}+15xy+25y^{2}\right)\left(9x^{2}-18xy+5y^{2}\right)}
Multiply \frac{5\left(x-5y\right)}{2\left(9x^{2}+15xy+25y^{2}\right)} times \frac{9x^{2}+15xy+25y^{2}}{9x^{2}-18xy+5y^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{5\left(x-5y\right)}{2\left(9x^{2}-18xy+5y^{2}\right)}
Cancel out 9x^{2}+15xy+25y^{2} in both numerator and denominator.
\frac{5x-25y}{2\left(9x^{2}-18xy+5y^{2}\right)}
Use the distributive property to multiply 5 by x-5y.
\frac{5x-25y}{18x^{2}-36xy+10y^{2}}
Use the distributive property to multiply 2 by 9x^{2}-18xy+5y^{2}.