Evaluate
\frac{9x^{2}}{4}-\frac{4y^{2}}{9}
Factor
\frac{\left(9x-4y\right)\left(9x+4y\right)}{36}
Share
Copied to clipboard
\frac{9\times 9x^{2}}{36}-\frac{4\times 4y^{2}}{36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 9 is 36. Multiply \frac{9x^{2}}{4} times \frac{9}{9}. Multiply \frac{4y^{2}}{9} times \frac{4}{4}.
\frac{9\times 9x^{2}-4\times 4y^{2}}{36}
Since \frac{9\times 9x^{2}}{36} and \frac{4\times 4y^{2}}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{81x^{2}-16y^{2}}{36}
Do the multiplications in 9\times 9x^{2}-4\times 4y^{2}.
\frac{81x^{2}-16y^{2}}{36}
Factor out \frac{1}{36}.
\left(9x-4y\right)\left(9x+4y\right)
Consider 81x^{2}-16y^{2}. Rewrite 81x^{2}-16y^{2} as \left(9x\right)^{2}-\left(4y\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(9x-4y\right)\left(9x+4y\right)}{36}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}