Solve for x
x = \frac{\sqrt{4281} + 85}{92} \approx 1.635101644
x=\frac{85-\sqrt{4281}}{92}\approx 0.212724443
Graph
Share
Copied to clipboard
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(9-8x\right)
Variable x cannot be equal to any of the values \frac{9}{7},\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-7\right)\left(7x-9\right), the least common multiple of 7x-9,4x-7.
36x^{2}-35x-49=\left(7x-9\right)\left(9-8x\right)
Use the distributive property to multiply 4x-7 by 9x+7 and combine like terms.
36x^{2}-35x-49=135x-56x^{2}-81
Use the distributive property to multiply 7x-9 by 9-8x and combine like terms.
36x^{2}-35x-49-135x=-56x^{2}-81
Subtract 135x from both sides.
36x^{2}-170x-49=-56x^{2}-81
Combine -35x and -135x to get -170x.
36x^{2}-170x-49+56x^{2}=-81
Add 56x^{2} to both sides.
92x^{2}-170x-49=-81
Combine 36x^{2} and 56x^{2} to get 92x^{2}.
92x^{2}-170x-49+81=0
Add 81 to both sides.
92x^{2}-170x+32=0
Add -49 and 81 to get 32.
x=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 92\times 32}}{2\times 92}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 92 for a, -170 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-170\right)±\sqrt{28900-4\times 92\times 32}}{2\times 92}
Square -170.
x=\frac{-\left(-170\right)±\sqrt{28900-368\times 32}}{2\times 92}
Multiply -4 times 92.
x=\frac{-\left(-170\right)±\sqrt{28900-11776}}{2\times 92}
Multiply -368 times 32.
x=\frac{-\left(-170\right)±\sqrt{17124}}{2\times 92}
Add 28900 to -11776.
x=\frac{-\left(-170\right)±2\sqrt{4281}}{2\times 92}
Take the square root of 17124.
x=\frac{170±2\sqrt{4281}}{2\times 92}
The opposite of -170 is 170.
x=\frac{170±2\sqrt{4281}}{184}
Multiply 2 times 92.
x=\frac{2\sqrt{4281}+170}{184}
Now solve the equation x=\frac{170±2\sqrt{4281}}{184} when ± is plus. Add 170 to 2\sqrt{4281}.
x=\frac{\sqrt{4281}+85}{92}
Divide 170+2\sqrt{4281} by 184.
x=\frac{170-2\sqrt{4281}}{184}
Now solve the equation x=\frac{170±2\sqrt{4281}}{184} when ± is minus. Subtract 2\sqrt{4281} from 170.
x=\frac{85-\sqrt{4281}}{92}
Divide 170-2\sqrt{4281} by 184.
x=\frac{\sqrt{4281}+85}{92} x=\frac{85-\sqrt{4281}}{92}
The equation is now solved.
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(9-8x\right)
Variable x cannot be equal to any of the values \frac{9}{7},\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-7\right)\left(7x-9\right), the least common multiple of 7x-9,4x-7.
36x^{2}-35x-49=\left(7x-9\right)\left(9-8x\right)
Use the distributive property to multiply 4x-7 by 9x+7 and combine like terms.
36x^{2}-35x-49=135x-56x^{2}-81
Use the distributive property to multiply 7x-9 by 9-8x and combine like terms.
36x^{2}-35x-49-135x=-56x^{2}-81
Subtract 135x from both sides.
36x^{2}-170x-49=-56x^{2}-81
Combine -35x and -135x to get -170x.
36x^{2}-170x-49+56x^{2}=-81
Add 56x^{2} to both sides.
92x^{2}-170x-49=-81
Combine 36x^{2} and 56x^{2} to get 92x^{2}.
92x^{2}-170x=-81+49
Add 49 to both sides.
92x^{2}-170x=-32
Add -81 and 49 to get -32.
\frac{92x^{2}-170x}{92}=-\frac{32}{92}
Divide both sides by 92.
x^{2}+\left(-\frac{170}{92}\right)x=-\frac{32}{92}
Dividing by 92 undoes the multiplication by 92.
x^{2}-\frac{85}{46}x=-\frac{32}{92}
Reduce the fraction \frac{-170}{92} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{85}{46}x=-\frac{8}{23}
Reduce the fraction \frac{-32}{92} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{85}{46}x+\left(-\frac{85}{92}\right)^{2}=-\frac{8}{23}+\left(-\frac{85}{92}\right)^{2}
Divide -\frac{85}{46}, the coefficient of the x term, by 2 to get -\frac{85}{92}. Then add the square of -\frac{85}{92} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{85}{46}x+\frac{7225}{8464}=-\frac{8}{23}+\frac{7225}{8464}
Square -\frac{85}{92} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{85}{46}x+\frac{7225}{8464}=\frac{4281}{8464}
Add -\frac{8}{23} to \frac{7225}{8464} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{85}{92}\right)^{2}=\frac{4281}{8464}
Factor x^{2}-\frac{85}{46}x+\frac{7225}{8464}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{92}\right)^{2}}=\sqrt{\frac{4281}{8464}}
Take the square root of both sides of the equation.
x-\frac{85}{92}=\frac{\sqrt{4281}}{92} x-\frac{85}{92}=-\frac{\sqrt{4281}}{92}
Simplify.
x=\frac{\sqrt{4281}+85}{92} x=\frac{85-\sqrt{4281}}{92}
Add \frac{85}{92} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}