Evaluate
\frac{\left(3m-1\right)\left(m+1\right)\left(3m+2\right)}{6m\left(m-2n\right)}
Expand
-\frac{9m^{3}+12m^{2}+m-2}{6m\left(2n-m\right)}
Share
Copied to clipboard
\frac{9m^{2}-1}{3m\left(m-2n\right)}+\frac{9m^{2}-6m+1}{6\left(m-2n\right)}
Factor 3m^{2}-6mn. Factor 6m-12n.
\frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)}+\frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3m\left(m-2n\right) and 6\left(m-2n\right) is 6m\left(m-2n\right). Multiply \frac{9m^{2}-1}{3m\left(m-2n\right)} times \frac{2}{2}. Multiply \frac{9m^{2}-6m+1}{6\left(m-2n\right)} times \frac{m}{m}.
\frac{2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Since \frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)} and \frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)} have the same denominator, add them by adding their numerators.
\frac{18m^{2}-2+9m^{3}-6m^{2}+m}{6m\left(m-2n\right)}
Do the multiplications in 2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m.
\frac{12m^{2}-2+9m^{3}+m}{6m\left(m-2n\right)}
Combine like terms in 18m^{2}-2+9m^{3}-6m^{2}+m.
\frac{12m^{2}-2+9m^{3}+m}{6m^{2}-12mn}
Expand 6m\left(m-2n\right).
\frac{9m^{2}-1}{3m\left(m-2n\right)}+\frac{9m^{2}-6m+1}{6\left(m-2n\right)}
Factor 3m^{2}-6mn. Factor 6m-12n.
\frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)}+\frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3m\left(m-2n\right) and 6\left(m-2n\right) is 6m\left(m-2n\right). Multiply \frac{9m^{2}-1}{3m\left(m-2n\right)} times \frac{2}{2}. Multiply \frac{9m^{2}-6m+1}{6\left(m-2n\right)} times \frac{m}{m}.
\frac{2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Since \frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)} and \frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)} have the same denominator, add them by adding their numerators.
\frac{18m^{2}-2+9m^{3}-6m^{2}+m}{6m\left(m-2n\right)}
Do the multiplications in 2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m.
\frac{12m^{2}-2+9m^{3}+m}{6m\left(m-2n\right)}
Combine like terms in 18m^{2}-2+9m^{3}-6m^{2}+m.
\frac{12m^{2}-2+9m^{3}+m}{6m^{2}-12mn}
Expand 6m\left(m-2n\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}