Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

9k^{2}=7\left(k^{2}+5\right)
Multiply both sides of the equation by 14\left(k^{2}+5\right), the least common multiple of 70+14k^{2},2.
9k^{2}=7k^{2}+35
Use the distributive property to multiply 7 by k^{2}+5.
9k^{2}-7k^{2}=35
Subtract 7k^{2} from both sides.
2k^{2}=35
Combine 9k^{2} and -7k^{2} to get 2k^{2}.
k^{2}=\frac{35}{2}
Divide both sides by 2.
k=\frac{\sqrt{70}}{2} k=-\frac{\sqrt{70}}{2}
Take the square root of both sides of the equation.
9k^{2}=7\left(k^{2}+5\right)
Multiply both sides of the equation by 14\left(k^{2}+5\right), the least common multiple of 70+14k^{2},2.
9k^{2}=7k^{2}+35
Use the distributive property to multiply 7 by k^{2}+5.
9k^{2}-7k^{2}=35
Subtract 7k^{2} from both sides.
2k^{2}=35
Combine 9k^{2} and -7k^{2} to get 2k^{2}.
2k^{2}-35=0
Subtract 35 from both sides.
k=\frac{0±\sqrt{0^{2}-4\times 2\left(-35\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 2\left(-35\right)}}{2\times 2}
Square 0.
k=\frac{0±\sqrt{-8\left(-35\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{0±\sqrt{280}}{2\times 2}
Multiply -8 times -35.
k=\frac{0±2\sqrt{70}}{2\times 2}
Take the square root of 280.
k=\frac{0±2\sqrt{70}}{4}
Multiply 2 times 2.
k=\frac{\sqrt{70}}{2}
Now solve the equation k=\frac{0±2\sqrt{70}}{4} when ± is plus.
k=-\frac{\sqrt{70}}{2}
Now solve the equation k=\frac{0±2\sqrt{70}}{4} when ± is minus.
k=\frac{\sqrt{70}}{2} k=-\frac{\sqrt{70}}{2}
The equation is now solved.