Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{3b}{11x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&b=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{3b}{11x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&b=0\text{ and }x=0\end{matrix}\right.
Solve for b
b=-\frac{11ax}{3}
Graph
Share
Copied to clipboard
5\left(9ax+2b\right)+3\left(8ax+7b\right)=15b-\left(8ax+5b\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5,15.
45ax+10b+3\left(8ax+7b\right)=15b-\left(8ax+5b\right)
Use the distributive property to multiply 5 by 9ax+2b.
45ax+10b+24ax+21b=15b-\left(8ax+5b\right)
Use the distributive property to multiply 3 by 8ax+7b.
69ax+10b+21b=15b-\left(8ax+5b\right)
Combine 45ax and 24ax to get 69ax.
69ax+31b=15b-\left(8ax+5b\right)
Combine 10b and 21b to get 31b.
69ax+31b=15b-8ax-5b
To find the opposite of 8ax+5b, find the opposite of each term.
69ax+31b=10b-8ax
Combine 15b and -5b to get 10b.
69ax+31b+8ax=10b
Add 8ax to both sides.
77ax+31b=10b
Combine 69ax and 8ax to get 77ax.
77ax=10b-31b
Subtract 31b from both sides.
77ax=-21b
Combine 10b and -31b to get -21b.
77xa=-21b
The equation is in standard form.
\frac{77xa}{77x}=-\frac{21b}{77x}
Divide both sides by 77x.
a=-\frac{21b}{77x}
Dividing by 77x undoes the multiplication by 77x.
a=-\frac{3b}{11x}
Divide -21b by 77x.
5\left(9ax+2b\right)+3\left(8ax+7b\right)=15b-\left(8ax+5b\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5,15.
45ax+10b+3\left(8ax+7b\right)=15b-\left(8ax+5b\right)
Use the distributive property to multiply 5 by 9ax+2b.
45ax+10b+24ax+21b=15b-\left(8ax+5b\right)
Use the distributive property to multiply 3 by 8ax+7b.
69ax+10b+21b=15b-\left(8ax+5b\right)
Combine 45ax and 24ax to get 69ax.
69ax+31b=15b-\left(8ax+5b\right)
Combine 10b and 21b to get 31b.
69ax+31b=15b-8ax-5b
To find the opposite of 8ax+5b, find the opposite of each term.
69ax+31b=10b-8ax
Combine 15b and -5b to get 10b.
69ax+31b+8ax=10b
Add 8ax to both sides.
77ax+31b=10b
Combine 69ax and 8ax to get 77ax.
77ax=10b-31b
Subtract 31b from both sides.
77ax=-21b
Combine 10b and -31b to get -21b.
77xa=-21b
The equation is in standard form.
\frac{77xa}{77x}=-\frac{21b}{77x}
Divide both sides by 77x.
a=-\frac{21b}{77x}
Dividing by 77x undoes the multiplication by 77x.
a=-\frac{3b}{11x}
Divide -21b by 77x.
5\left(9ax+2b\right)+3\left(8ax+7b\right)=15b-\left(8ax+5b\right)
Multiply both sides of the equation by 15, the least common multiple of 3,5,15.
45ax+10b+3\left(8ax+7b\right)=15b-\left(8ax+5b\right)
Use the distributive property to multiply 5 by 9ax+2b.
45ax+10b+24ax+21b=15b-\left(8ax+5b\right)
Use the distributive property to multiply 3 by 8ax+7b.
69ax+10b+21b=15b-\left(8ax+5b\right)
Combine 45ax and 24ax to get 69ax.
69ax+31b=15b-\left(8ax+5b\right)
Combine 10b and 21b to get 31b.
69ax+31b=15b-8ax-5b
To find the opposite of 8ax+5b, find the opposite of each term.
69ax+31b=10b-8ax
Combine 15b and -5b to get 10b.
69ax+31b-10b=-8ax
Subtract 10b from both sides.
69ax+21b=-8ax
Combine 31b and -10b to get 21b.
21b=-8ax-69ax
Subtract 69ax from both sides.
21b=-77ax
Combine -8ax and -69ax to get -77ax.
\frac{21b}{21}=-\frac{77ax}{21}
Divide both sides by 21.
b=-\frac{77ax}{21}
Dividing by 21 undoes the multiplication by 21.
b=-\frac{11ax}{3}
Divide -77ax by 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}