Solve for y
y=-\frac{24\sqrt{61}i}{61}\approx -0-3.072885118i
y=\frac{24\sqrt{61}i}{61}\approx 3.072885118i
Quiz
Complex Number
5 problems similar to:
\frac { 9 - y ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 36 } = 1
Share
Copied to clipboard
36\left(9-y^{2}\right)-25y^{2}=900
Multiply both sides of the equation by 900, the least common multiple of 25,36.
324-36y^{2}-25y^{2}=900
Use the distributive property to multiply 36 by 9-y^{2}.
324-61y^{2}=900
Combine -36y^{2} and -25y^{2} to get -61y^{2}.
-61y^{2}=900-324
Subtract 324 from both sides.
-61y^{2}=576
Subtract 324 from 900 to get 576.
y^{2}=-\frac{576}{61}
Divide both sides by -61.
y=\frac{24\sqrt{61}i}{61} y=-\frac{24\sqrt{61}i}{61}
The equation is now solved.
36\left(9-y^{2}\right)-25y^{2}=900
Multiply both sides of the equation by 900, the least common multiple of 25,36.
324-36y^{2}-25y^{2}=900
Use the distributive property to multiply 36 by 9-y^{2}.
324-61y^{2}=900
Combine -36y^{2} and -25y^{2} to get -61y^{2}.
324-61y^{2}-900=0
Subtract 900 from both sides.
-576-61y^{2}=0
Subtract 900 from 324 to get -576.
-61y^{2}-576=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\left(-61\right)\left(-576\right)}}{2\left(-61\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -61 for a, 0 for b, and -576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-61\right)\left(-576\right)}}{2\left(-61\right)}
Square 0.
y=\frac{0±\sqrt{244\left(-576\right)}}{2\left(-61\right)}
Multiply -4 times -61.
y=\frac{0±\sqrt{-140544}}{2\left(-61\right)}
Multiply 244 times -576.
y=\frac{0±48\sqrt{61}i}{2\left(-61\right)}
Take the square root of -140544.
y=\frac{0±48\sqrt{61}i}{-122}
Multiply 2 times -61.
y=-\frac{24\sqrt{61}i}{61}
Now solve the equation y=\frac{0±48\sqrt{61}i}{-122} when ± is plus.
y=\frac{24\sqrt{61}i}{61}
Now solve the equation y=\frac{0±48\sqrt{61}i}{-122} when ± is minus.
y=-\frac{24\sqrt{61}i}{61} y=\frac{24\sqrt{61}i}{61}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}