Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2\left(9-x^{2}\right)+\left(-6-8x\right)\times 3=\left(4x-3\right)\left(x+12\right)
Variable x cannot be equal to any of the values -\frac{3}{4},\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(4x-3\right)\left(4x+3\right), the least common multiple of 9-16x^{2},3-4x,6+8x.
-18+2x^{2}+\left(-6-8x\right)\times 3=\left(4x-3\right)\left(x+12\right)
Use the distributive property to multiply -2 by 9-x^{2}.
-18+2x^{2}-18-24x=\left(4x-3\right)\left(x+12\right)
Use the distributive property to multiply -6-8x by 3.
-36+2x^{2}-24x=\left(4x-3\right)\left(x+12\right)
Subtract 18 from -18 to get -36.
-36+2x^{2}-24x=4x^{2}+45x-36
Use the distributive property to multiply 4x-3 by x+12 and combine like terms.
-36+2x^{2}-24x-4x^{2}=45x-36
Subtract 4x^{2} from both sides.
-36-2x^{2}-24x=45x-36
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-36-2x^{2}-24x-45x=-36
Subtract 45x from both sides.
-36-2x^{2}-69x=-36
Combine -24x and -45x to get -69x.
-36-2x^{2}-69x+36=0
Add 36 to both sides.
-2x^{2}-69x=0
Add -36 and 36 to get 0.
x\left(-2x-69\right)=0
Factor out x.
x=0 x=-\frac{69}{2}
To find equation solutions, solve x=0 and -2x-69=0.
-2\left(9-x^{2}\right)+\left(-6-8x\right)\times 3=\left(4x-3\right)\left(x+12\right)
Variable x cannot be equal to any of the values -\frac{3}{4},\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(4x-3\right)\left(4x+3\right), the least common multiple of 9-16x^{2},3-4x,6+8x.
-18+2x^{2}+\left(-6-8x\right)\times 3=\left(4x-3\right)\left(x+12\right)
Use the distributive property to multiply -2 by 9-x^{2}.
-18+2x^{2}-18-24x=\left(4x-3\right)\left(x+12\right)
Use the distributive property to multiply -6-8x by 3.
-36+2x^{2}-24x=\left(4x-3\right)\left(x+12\right)
Subtract 18 from -18 to get -36.
-36+2x^{2}-24x=4x^{2}+45x-36
Use the distributive property to multiply 4x-3 by x+12 and combine like terms.
-36+2x^{2}-24x-4x^{2}=45x-36
Subtract 4x^{2} from both sides.
-36-2x^{2}-24x=45x-36
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-36-2x^{2}-24x-45x=-36
Subtract 45x from both sides.
-36-2x^{2}-69x=-36
Combine -24x and -45x to get -69x.
-36-2x^{2}-69x+36=0
Add 36 to both sides.
-2x^{2}-69x=0
Add -36 and 36 to get 0.
x=\frac{-\left(-69\right)±\sqrt{\left(-69\right)^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -69 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-69\right)±69}{2\left(-2\right)}
Take the square root of \left(-69\right)^{2}.
x=\frac{69±69}{2\left(-2\right)}
The opposite of -69 is 69.
x=\frac{69±69}{-4}
Multiply 2 times -2.
x=\frac{138}{-4}
Now solve the equation x=\frac{69±69}{-4} when ± is plus. Add 69 to 69.
x=-\frac{69}{2}
Reduce the fraction \frac{138}{-4} to lowest terms by extracting and canceling out 2.
x=\frac{0}{-4}
Now solve the equation x=\frac{69±69}{-4} when ± is minus. Subtract 69 from 69.
x=0
Divide 0 by -4.
x=-\frac{69}{2} x=0
The equation is now solved.
-2\left(9-x^{2}\right)+\left(-6-8x\right)\times 3=\left(4x-3\right)\left(x+12\right)
Variable x cannot be equal to any of the values -\frac{3}{4},\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(4x-3\right)\left(4x+3\right), the least common multiple of 9-16x^{2},3-4x,6+8x.
-18+2x^{2}+\left(-6-8x\right)\times 3=\left(4x-3\right)\left(x+12\right)
Use the distributive property to multiply -2 by 9-x^{2}.
-18+2x^{2}-18-24x=\left(4x-3\right)\left(x+12\right)
Use the distributive property to multiply -6-8x by 3.
-36+2x^{2}-24x=\left(4x-3\right)\left(x+12\right)
Subtract 18 from -18 to get -36.
-36+2x^{2}-24x=4x^{2}+45x-36
Use the distributive property to multiply 4x-3 by x+12 and combine like terms.
-36+2x^{2}-24x-4x^{2}=45x-36
Subtract 4x^{2} from both sides.
-36-2x^{2}-24x=45x-36
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-36-2x^{2}-24x-45x=-36
Subtract 45x from both sides.
-36-2x^{2}-69x=-36
Combine -24x and -45x to get -69x.
-2x^{2}-69x=-36+36
Add 36 to both sides.
-2x^{2}-69x=0
Add -36 and 36 to get 0.
\frac{-2x^{2}-69x}{-2}=\frac{0}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{69}{-2}\right)x=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{69}{2}x=\frac{0}{-2}
Divide -69 by -2.
x^{2}+\frac{69}{2}x=0
Divide 0 by -2.
x^{2}+\frac{69}{2}x+\left(\frac{69}{4}\right)^{2}=\left(\frac{69}{4}\right)^{2}
Divide \frac{69}{2}, the coefficient of the x term, by 2 to get \frac{69}{4}. Then add the square of \frac{69}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{69}{2}x+\frac{4761}{16}=\frac{4761}{16}
Square \frac{69}{4} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{69}{4}\right)^{2}=\frac{4761}{16}
Factor x^{2}+\frac{69}{2}x+\frac{4761}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{69}{4}\right)^{2}}=\sqrt{\frac{4761}{16}}
Take the square root of both sides of the equation.
x+\frac{69}{4}=\frac{69}{4} x+\frac{69}{4}=-\frac{69}{4}
Simplify.
x=0 x=-\frac{69}{2}
Subtract \frac{69}{4} from both sides of the equation.