Solve for x (complex solution)
x\in \mathrm{C}\setminus 3,-3
Solve for x
x\in \mathrm{R}\setminus 3,-3
Graph
Share
Copied to clipboard
9-x^{2}=-\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right).
9-x^{2}=\left(-x+3\right)\left(x+3\right)
Use the distributive property to multiply -1 by x-3.
9-x^{2}=-x^{2}+9
Use the distributive property to multiply -x+3 by x+3 and combine like terms.
9-x^{2}+x^{2}=9
Add x^{2} to both sides.
9=9
Combine -x^{2} and x^{2} to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{C}
This is true for any x.
x\in \mathrm{C}\setminus -3,3
Variable x cannot be equal to any of the values -3,3.
9-x^{2}=-\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right).
9-x^{2}=\left(-x+3\right)\left(x+3\right)
Use the distributive property to multiply -1 by x-3.
9-x^{2}=-x^{2}+9
Use the distributive property to multiply -x+3 by x+3 and combine like terms.
9-x^{2}+x^{2}=9
Add x^{2} to both sides.
9=9
Combine -x^{2} and x^{2} to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -3,3
Variable x cannot be equal to any of the values -3,3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}