Solve for h
h=\frac{9-4k}{7}
k\neq \frac{9}{4}
Solve for k
k=\frac{9-7h}{4}
h\neq 0
Share
Copied to clipboard
9-5h-4k=2h
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by h.
9-5h-4k-2h=0
Subtract 2h from both sides.
9-7h-4k=0
Combine -5h and -2h to get -7h.
-7h-4k=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
-7h=-9+4k
Add 4k to both sides.
-7h=4k-9
The equation is in standard form.
\frac{-7h}{-7}=\frac{4k-9}{-7}
Divide both sides by -7.
h=\frac{4k-9}{-7}
Dividing by -7 undoes the multiplication by -7.
h=\frac{9-4k}{7}
Divide -9+4k by -7.
h=\frac{9-4k}{7}\text{, }h\neq 0
Variable h cannot be equal to 0.
9-5h-4k=2h
Multiply both sides of the equation by h.
-5h-4k=2h-9
Subtract 9 from both sides.
-4k=2h-9+5h
Add 5h to both sides.
-4k=7h-9
Combine 2h and 5h to get 7h.
\frac{-4k}{-4}=\frac{7h-9}{-4}
Divide both sides by -4.
k=\frac{7h-9}{-4}
Dividing by -4 undoes the multiplication by -4.
k=\frac{9-7h}{4}
Divide 7h-9 by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}