Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9-19i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+4i.
\frac{\left(9-19i\right)\left(1+4i\right)}{1^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9-19i\right)\left(1+4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4i^{2}}{17}
Multiply complex numbers 9-19i and 1+4i like you multiply binomials.
\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{9+36i-19i+76}{17}
Do the multiplications in 9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right).
\frac{9+76+\left(36-19\right)i}{17}
Combine the real and imaginary parts in 9+36i-19i+76.
\frac{85+17i}{17}
Do the additions in 9+76+\left(36-19\right)i.
5+i
Divide 85+17i by 17 to get 5+i.
Re(\frac{\left(9-19i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)})
Multiply both numerator and denominator of \frac{9-19i}{1-4i} by the complex conjugate of the denominator, 1+4i.
Re(\frac{\left(9-19i\right)\left(1+4i\right)}{1^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9-19i\right)\left(1+4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4i^{2}}{17})
Multiply complex numbers 9-19i and 1+4i like you multiply binomials.
Re(\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{9+36i-19i+76}{17})
Do the multiplications in 9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right).
Re(\frac{9+76+\left(36-19\right)i}{17})
Combine the real and imaginary parts in 9+36i-19i+76.
Re(\frac{85+17i}{17})
Do the additions in 9+76+\left(36-19\right)i.
Re(5+i)
Divide 85+17i by 17 to get 5+i.
5
The real part of 5+i is 5.