Evaluate
5+i
Real Part
5
Share
Copied to clipboard
\frac{\left(9-19i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+4i.
\frac{\left(9-19i\right)\left(1+4i\right)}{1^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9-19i\right)\left(1+4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4i^{2}}{17}
Multiply complex numbers 9-19i and 1+4i like you multiply binomials.
\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{9+36i-19i+76}{17}
Do the multiplications in 9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right).
\frac{9+76+\left(36-19\right)i}{17}
Combine the real and imaginary parts in 9+36i-19i+76.
\frac{85+17i}{17}
Do the additions in 9+76+\left(36-19\right)i.
5+i
Divide 85+17i by 17 to get 5+i.
Re(\frac{\left(9-19i\right)\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)})
Multiply both numerator and denominator of \frac{9-19i}{1-4i} by the complex conjugate of the denominator, 1+4i.
Re(\frac{\left(9-19i\right)\left(1+4i\right)}{1^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9-19i\right)\left(1+4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4i^{2}}{17})
Multiply complex numbers 9-19i and 1+4i like you multiply binomials.
Re(\frac{9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{9+36i-19i+76}{17})
Do the multiplications in 9\times 1+9\times \left(4i\right)-19i-19\times 4\left(-1\right).
Re(\frac{9+76+\left(36-19\right)i}{17})
Combine the real and imaginary parts in 9+36i-19i+76.
Re(\frac{85+17i}{17})
Do the additions in 9+76+\left(36-19\right)i.
Re(5+i)
Divide 85+17i by 17 to get 5+i.
5
The real part of 5+i is 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}