Solve for L
\left\{\begin{matrix}L=\frac{9\left(d_{1}-d_{2}\right)}{w}\text{, }&d_{1}\neq d_{2}\text{ and }w\neq 0\\L\neq 0\text{, }&w=0\text{ and }d_{1}=d_{2}\end{matrix}\right.
Solve for d_1
d_{1}=\frac{Lw}{9}+d_{2}
L\neq 0
Share
Copied to clipboard
9\left(d_{1}-d_{2}\right)=wL
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
9d_{1}-9d_{2}=wL
Use the distributive property to multiply 9 by d_{1}-d_{2}.
wL=9d_{1}-9d_{2}
Swap sides so that all variable terms are on the left hand side.
\frac{wL}{w}=\frac{9d_{1}-9d_{2}}{w}
Divide both sides by w.
L=\frac{9d_{1}-9d_{2}}{w}
Dividing by w undoes the multiplication by w.
L=\frac{9\left(d_{1}-d_{2}\right)}{w}
Divide 9d_{1}-9d_{2} by w.
L=\frac{9\left(d_{1}-d_{2}\right)}{w}\text{, }L\neq 0
Variable L cannot be equal to 0.
9\left(d_{1}-d_{2}\right)=wL
Multiply both sides of the equation by L.
9d_{1}-9d_{2}=wL
Use the distributive property to multiply 9 by d_{1}-d_{2}.
9d_{1}=wL+9d_{2}
Add 9d_{2} to both sides.
9d_{1}=Lw+9d_{2}
The equation is in standard form.
\frac{9d_{1}}{9}=\frac{Lw+9d_{2}}{9}
Divide both sides by 9.
d_{1}=\frac{Lw+9d_{2}}{9}
Dividing by 9 undoes the multiplication by 9.
d_{1}=\frac{Lw}{9}+d_{2}
Divide wL+9d_{2} by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}