Solve for x
x = -\frac{9}{5} = -1\frac{4}{5} = -1.8
Graph
Share
Copied to clipboard
\left(x+3\right)\times 9+x\left(x+3\right)\times 2=x\times 2x
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+3\right), the least common multiple of x,x+3.
9x+27+x\left(x+3\right)\times 2=x\times 2x
Use the distributive property to multiply x+3 by 9.
9x+27+\left(x^{2}+3x\right)\times 2=x\times 2x
Use the distributive property to multiply x by x+3.
9x+27+2x^{2}+6x=x\times 2x
Use the distributive property to multiply x^{2}+3x by 2.
15x+27+2x^{2}=x\times 2x
Combine 9x and 6x to get 15x.
15x+27+2x^{2}=x^{2}\times 2
Multiply x and x to get x^{2}.
15x+27+2x^{2}-x^{2}\times 2=0
Subtract x^{2}\times 2 from both sides.
15x+27=0
Combine 2x^{2} and -x^{2}\times 2 to get 0.
15x=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-27}{15}
Divide both sides by 15.
x=-\frac{9}{5}
Reduce the fraction \frac{-27}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}