Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

\frac{9}{\left(w-4\right)\left(w+3\right)}+\frac{w}{\left(w+3\right)\left(w+5\right)}
Factor w^{2}-w-12. Factor w^{2}+8w+15.
\frac{9\left(w+5\right)}{\left(w-4\right)\left(w+3\right)\left(w+5\right)}+\frac{w\left(w-4\right)}{\left(w-4\right)\left(w+3\right)\left(w+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w-4\right)\left(w+3\right) and \left(w+3\right)\left(w+5\right) is \left(w-4\right)\left(w+3\right)\left(w+5\right). Multiply \frac{9}{\left(w-4\right)\left(w+3\right)} times \frac{w+5}{w+5}. Multiply \frac{w}{\left(w+3\right)\left(w+5\right)} times \frac{w-4}{w-4}.
\frac{9\left(w+5\right)+w\left(w-4\right)}{\left(w-4\right)\left(w+3\right)\left(w+5\right)}
Since \frac{9\left(w+5\right)}{\left(w-4\right)\left(w+3\right)\left(w+5\right)} and \frac{w\left(w-4\right)}{\left(w-4\right)\left(w+3\right)\left(w+5\right)} have the same denominator, add them by adding their numerators.
\frac{9w+45+w^{2}-4w}{\left(w-4\right)\left(w+3\right)\left(w+5\right)}
Do the multiplications in 9\left(w+5\right)+w\left(w-4\right).
\frac{5w+45+w^{2}}{\left(w-4\right)\left(w+3\right)\left(w+5\right)}
Combine like terms in 9w+45+w^{2}-4w.
\frac{5w+45+w^{2}}{w^{3}+4w^{2}-17w-60}
Expand \left(w-4\right)\left(w+3\right)\left(w+5\right).