Solve for m
m = \frac{3 \sqrt{30}}{5} \approx 3.286335345
m = -\frac{3 \sqrt{30}}{5} \approx -3.286335345
Share
Copied to clipboard
9+\left(m+3\right)\times 15=5m\left(m+3\right)
Variable m cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by m+3.
9+15m+45=5m\left(m+3\right)
Use the distributive property to multiply m+3 by 15.
54+15m=5m\left(m+3\right)
Add 9 and 45 to get 54.
54+15m=5m^{2}+15m
Use the distributive property to multiply 5m by m+3.
54+15m-5m^{2}=15m
Subtract 5m^{2} from both sides.
54+15m-5m^{2}-15m=0
Subtract 15m from both sides.
54-5m^{2}=0
Combine 15m and -15m to get 0.
-5m^{2}=-54
Subtract 54 from both sides. Anything subtracted from zero gives its negation.
m^{2}=\frac{-54}{-5}
Divide both sides by -5.
m^{2}=\frac{54}{5}
Fraction \frac{-54}{-5} can be simplified to \frac{54}{5} by removing the negative sign from both the numerator and the denominator.
m=\frac{3\sqrt{30}}{5} m=-\frac{3\sqrt{30}}{5}
Take the square root of both sides of the equation.
9+\left(m+3\right)\times 15=5m\left(m+3\right)
Variable m cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by m+3.
9+15m+45=5m\left(m+3\right)
Use the distributive property to multiply m+3 by 15.
54+15m=5m\left(m+3\right)
Add 9 and 45 to get 54.
54+15m=5m^{2}+15m
Use the distributive property to multiply 5m by m+3.
54+15m-5m^{2}=15m
Subtract 5m^{2} from both sides.
54+15m-5m^{2}-15m=0
Subtract 15m from both sides.
54-5m^{2}=0
Combine 15m and -15m to get 0.
-5m^{2}+54=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 54}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 0 for b, and 54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-5\right)\times 54}}{2\left(-5\right)}
Square 0.
m=\frac{0±\sqrt{20\times 54}}{2\left(-5\right)}
Multiply -4 times -5.
m=\frac{0±\sqrt{1080}}{2\left(-5\right)}
Multiply 20 times 54.
m=\frac{0±6\sqrt{30}}{2\left(-5\right)}
Take the square root of 1080.
m=\frac{0±6\sqrt{30}}{-10}
Multiply 2 times -5.
m=-\frac{3\sqrt{30}}{5}
Now solve the equation m=\frac{0±6\sqrt{30}}{-10} when ± is plus.
m=\frac{3\sqrt{30}}{5}
Now solve the equation m=\frac{0±6\sqrt{30}}{-10} when ± is minus.
m=-\frac{3\sqrt{30}}{5} m=\frac{3\sqrt{30}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}