Solve for j
j=-4
Share
Copied to clipboard
\left(j-3\right)\times 9-\left(j+1\right)\times 7j=-\left(j-3\right)\left(j+1\right)\times 7
Variable j cannot be equal to any of the values -1,1,3 since division by zero is not defined. Multiply both sides of the equation by \left(j-3\right)\left(j-1\right)\left(j+1\right), the least common multiple of j^{2}-1,j^{2}-4j+3,j-1.
9j-27-\left(j+1\right)\times 7j=-\left(j-3\right)\left(j+1\right)\times 7
Use the distributive property to multiply j-3 by 9.
9j-27-\left(7j+7\right)j=-\left(j-3\right)\left(j+1\right)\times 7
Use the distributive property to multiply j+1 by 7.
9j-27-\left(7j^{2}+7j\right)=-\left(j-3\right)\left(j+1\right)\times 7
Use the distributive property to multiply 7j+7 by j.
9j-27-7j^{2}-7j=-\left(j-3\right)\left(j+1\right)\times 7
To find the opposite of 7j^{2}+7j, find the opposite of each term.
2j-27-7j^{2}=-\left(j-3\right)\left(j+1\right)\times 7
Combine 9j and -7j to get 2j.
2j-27-7j^{2}=-\left(j^{2}-2j-3\right)\times 7
Use the distributive property to multiply j-3 by j+1 and combine like terms.
2j-27-7j^{2}=-\left(7j^{2}-14j-21\right)
Use the distributive property to multiply j^{2}-2j-3 by 7.
2j-27-7j^{2}=-7j^{2}+14j+21
To find the opposite of 7j^{2}-14j-21, find the opposite of each term.
2j-27-7j^{2}+7j^{2}=14j+21
Add 7j^{2} to both sides.
2j-27=14j+21
Combine -7j^{2} and 7j^{2} to get 0.
2j-27-14j=21
Subtract 14j from both sides.
-12j-27=21
Combine 2j and -14j to get -12j.
-12j=21+27
Add 27 to both sides.
-12j=48
Add 21 and 27 to get 48.
j=\frac{48}{-12}
Divide both sides by -12.
j=-4
Divide 48 by -12 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}