Verify
false
Share
Copied to clipboard
\frac{9}{9\left(-4\right)\left(2-8\right)}-\frac{9\left(2-6\right)}{9\left(2-6\right)\left(2-8\right)}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Subtract 6 from 2 to get -4.
\frac{9}{-36\left(2-8\right)}-\frac{9\left(2-6\right)}{9\left(2-6\right)\left(2-8\right)}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Multiply 9 and -4 to get -36.
\frac{9}{-36\left(-6\right)}-\frac{9\left(2-6\right)}{9\left(2-6\right)\left(2-8\right)}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Subtract 8 from 2 to get -6.
\frac{9}{216}-\frac{9\left(2-6\right)}{9\left(2-6\right)\left(2-8\right)}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Multiply -36 and -6 to get 216.
\frac{1}{24}-\frac{9\left(2-6\right)}{9\left(2-6\right)\left(2-8\right)}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Reduce the fraction \frac{9}{216} to lowest terms by extracting and canceling out 9.
\frac{1}{24}-\frac{1}{2-8}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Cancel out 9\left(2-6\right) in both numerator and denominator.
\frac{1}{24}-\frac{1}{-6}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Subtract 8 from 2 to get -6.
\frac{1}{24}-\left(-\frac{1}{6}\right)=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Fraction \frac{1}{-6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
\frac{1}{24}+\frac{1}{6}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
The opposite of -\frac{1}{6} is \frac{1}{6}.
\frac{1}{24}+\frac{4}{24}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Least common multiple of 24 and 6 is 24. Convert \frac{1}{24} and \frac{1}{6} to fractions with denominator 24.
\frac{1+4}{24}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Since \frac{1}{24} and \frac{4}{24} have the same denominator, add them by adding their numerators.
\frac{5}{24}=\frac{2-8}{9\left(2-6\right)\times 2\times 8}
Add 1 and 4 to get 5.
\frac{5}{24}=\frac{-6}{9\left(2-6\right)\times 2\times 8}
Subtract 8 from 2 to get -6.
\frac{5}{24}=\frac{-6}{9\left(-4\right)\times 2\times 8}
Subtract 6 from 2 to get -4.
\frac{5}{24}=\frac{-6}{-36\times 2\times 8}
Multiply 9 and -4 to get -36.
\frac{5}{24}=\frac{-6}{-72\times 8}
Multiply -36 and 2 to get -72.
\frac{5}{24}=\frac{-6}{-576}
Multiply -72 and 8 to get -576.
\frac{5}{24}=\frac{1}{96}
Reduce the fraction \frac{-6}{-576} to lowest terms by extracting and canceling out -6.
\frac{20}{96}=\frac{1}{96}
Least common multiple of 24 and 96 is 96. Convert \frac{5}{24} and \frac{1}{96} to fractions with denominator 96.
\text{false}
Compare \frac{20}{96} and \frac{1}{96}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}