Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
1-\frac{3}{9}-\frac{1}{9}-\frac{2}{9}
Divide 9 by 9 to get 1.
1-\frac{1}{3}-\frac{1}{9}-\frac{2}{9}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{3}{3}-\frac{1}{3}-\frac{1}{9}-\frac{2}{9}
Convert 1 to fraction \frac{3}{3}.
\frac{3-1}{3}-\frac{1}{9}-\frac{2}{9}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\frac{1}{9}-\frac{2}{9}
Subtract 1 from 3 to get 2.
\frac{6}{9}-\frac{1}{9}-\frac{2}{9}
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{1}{9} to fractions with denominator 9.
\frac{6-1}{9}-\frac{2}{9}
Since \frac{6}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{9}-\frac{2}{9}
Subtract 1 from 6 to get 5.
\frac{5-2}{9}
Since \frac{5}{9} and \frac{2}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{9}
Subtract 2 from 5 to get 3.
\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}