Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+i.
\frac{9\left(5+i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(5+i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 5+9i}{26}
Multiply 9 times 5+i.
\frac{45+9i}{26}
Do the multiplications in 9\times 5+9i.
\frac{45}{26}+\frac{9}{26}i
Divide 45+9i by 26 to get \frac{45}{26}+\frac{9}{26}i.
Re(\frac{9\left(5+i\right)}{\left(5-i\right)\left(5+i\right)})
Multiply both numerator and denominator of \frac{9}{5-i} by the complex conjugate of the denominator, 5+i.
Re(\frac{9\left(5+i\right)}{5^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{9\left(5+i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 5+9i}{26})
Multiply 9 times 5+i.
Re(\frac{45+9i}{26})
Do the multiplications in 9\times 5+9i.
Re(\frac{45}{26}+\frac{9}{26}i)
Divide 45+9i by 26 to get \frac{45}{26}+\frac{9}{26}i.
\frac{45}{26}
The real part of \frac{45}{26}+\frac{9}{26}i is \frac{45}{26}.