Evaluate
\frac{9z\left(5z-3\right)}{5}
Expand
9z^{2}-\frac{27z}{5}
Share
Copied to clipboard
\frac{9}{5}z\times 5z+\frac{9}{5}z\left(-3\right)
Use the distributive property to multiply \frac{9}{5}z by 5z-3.
\frac{9}{5}z^{2}\times 5+\frac{9}{5}z\left(-3\right)
Multiply z and z to get z^{2}.
9z^{2}+\frac{9}{5}z\left(-3\right)
Cancel out 5 and 5.
9z^{2}+\frac{9\left(-3\right)}{5}z
Express \frac{9}{5}\left(-3\right) as a single fraction.
9z^{2}+\frac{-27}{5}z
Multiply 9 and -3 to get -27.
9z^{2}-\frac{27}{5}z
Fraction \frac{-27}{5} can be rewritten as -\frac{27}{5} by extracting the negative sign.
\frac{9}{5}z\times 5z+\frac{9}{5}z\left(-3\right)
Use the distributive property to multiply \frac{9}{5}z by 5z-3.
\frac{9}{5}z^{2}\times 5+\frac{9}{5}z\left(-3\right)
Multiply z and z to get z^{2}.
9z^{2}+\frac{9}{5}z\left(-3\right)
Cancel out 5 and 5.
9z^{2}+\frac{9\left(-3\right)}{5}z
Express \frac{9}{5}\left(-3\right) as a single fraction.
9z^{2}+\frac{-27}{5}z
Multiply 9 and -3 to get -27.
9z^{2}-\frac{27}{5}z
Fraction \frac{-27}{5} can be rewritten as -\frac{27}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}